Skip to main content

Interferometry for Piezoelectric Materials and Thin Films

  • Chapter
  • First Online:
Characterisation of Ferroelectric Bulk Materials and Thin Films

Part of the book series: Springer Series in Measurement Science and Technology ((SSMST,volume 2))

  • 2825 Accesses

Abstract

Piezoelectricity is the coupling between the mechanical and electric property of materials, which manifests itself by the generation of electric charge upon a pressure or conversely the produce of strain under an electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu, F., Chu, F., Trolier-McKinstry, S.: Longitudinal piezoelectric coefficient measurement for bulk ceramics and thin films using pneumatic pressure rig. J. Appl. Phys. 86, 588 (1999)

    Article  Google Scholar 

  2. Dubois, M., Muralt, P.: Measurement of the effective transverse piezoelectric coefficient e31, f of aln and pb (zrx, ti1-x) o3 thin films. Sens. Actuators A: Phys. 77(2), 106–112 (1999)

    Article  Google Scholar 

  3. Southin, J., Wilson, S., Schmitt, D., Whatmore, R.: E31, f determination for pzt films using a conventionald33’meter. J. Phys. D: Appl. Phys. 34, 1456 (2001)

    Article  Google Scholar 

  4. Harnagea, C., Pignolet, A., Alexe, M., Hesse, D.: Piezoresponse scanning force microscopy: what quantitative information can we really get out of piezoresponse measurements on ferroelectric thin films. Integr. Ferroelectr. 44(1), 113–124 (2002)

    Article  Google Scholar 

  5. Fotchenkov, A.A.: Sov. Phys. Cryst. 2, 643 (1957)

    Google Scholar 

  6. Musonov, V.M., Zaitseva, M.P., Chizhikov V.A., Kuznetsov V.P.: Radiotechnics, thin films, computer technics, Institute of Physics, Part I, vol. 1, p. 180. Krasnoyarsk, USSR (1973)

    Google Scholar 

  7. Sidnenko, E.V., Zheludev, I.S.: Kristallografiya. Sov. Phys. Crystallogr. 12, 465–467 (1967) (English Transl. 12, 397–399, 1967)

    Google Scholar 

  8. Yamaguchi, T., Hamano, K.: Inteferometric method of measuring complex piezoelectric constants of crystals in a frequency range up to about 50 khz. Jpn. J. Appl. Phys. 18, 927–932 (1979)

    Article  Google Scholar 

  9. Zhang, Q.M., Pan, W.Y., Cross, L.E.: Laser interferometer for the study of piezoelectric and electrostrictive strains. J. Appl. Phys. 63(8), 2492–2496 (1988)

    Article  Google Scholar 

  10. Zhang, Q.M., Jang, S., Cross, L.E.: Highfrequency strain response in ferroelectrics and its measurement using a modified machzehnder interferometer. J. Appl. Phys. 65(7), 2807–2813 (1989)

    Article  Google Scholar 

  11. Pan, W.Y., Cross, L.E.: A sensitive double beam laser interferometer for studying highfrequency piezoelectric and electrostrictive strains. Rev. Sci. Instrum. 60(8), 2701–2705 (1989)

    Article  Google Scholar 

  12. Li, J.-F., Moses, P., Viehland, D.: Simple, high-resolution interferometer for the measurement of frequency-dependent complex piezoelectric responses in ferroelectric ceramics. Rev. Sci. Instrum. 66(1), 215–221 (1995)

    Article  Google Scholar 

  13. Kholkin, A., Wutchrich, C., Taylor, D., Setter, N.: Interferometric measurements of electric fieldinduced displacements in piezoelectric thin films. Rev. Sci. Instrum. 67(5), 1935–1941 (1996)

    Article  Google Scholar 

  14. Tsurumi, T., Ikeda, N., Ohashi, N.: Non-180\(\,^{\circ }\) domain contribution in electric-field-induce strains of pzt ceramics measured by a mach-zehnder interferometer. J. Ceram. Soc. Jpn. 106(11), 1062–1066 (1998)

    Article  Google Scholar 

  15. Gerber, P., Roelofs, A., Lohse, O., Kügeler, C., Tiedke, S., Böttger, U., Waser, R.: Short-time piezoelectric measurements in ferroelectric thin films using a double-beam laser interferometer. Rev. Sci. Instrum. 74(4), 2613 (2003)

    Article  Google Scholar 

  16. Burianova, L., Sulc, M., Prokopova, M., Nosek, J.: The piezoelectric coefficients in a wide temperature range by laser interferometry. Ferroelectrics 292(1), 111–117 (2003)

    Google Scholar 

  17. Huang, Z., Whatmore, R.W.: A double-beam common path laser interferometer for the measurement of electric field-induced strains of piezoelectric thin films. Rev. Sci. Instrum. 76(12), 123906 (2005)

    Article  Google Scholar 

  18. Sizgoric, S., Gundjian, A.A.: An optical homodyne technique for measurement of amplitude and phase of subangstrom ultrasonic vibrations. Proc. IEEE 57(7), 1313–1314 (1969)

    Article  Google Scholar 

  19. Kwaaitaal, T., Luymes, B.J.: Noise limitations of michelson laser interferometers. J. Phys. D: Appl. Phys. 13(6), 1005 (1980)

    Article  Google Scholar 

  20. Chao, C., Wang, Z., Zhu, W.: Modulated laser interferometer with picometer resolution for piezoelectric characterization. Rev. Sci. Instrum. 75(11), 4641 (2004)

    Article  Google Scholar 

  21. Measurement of longitudinal piezoelectric coefficient of lead zirconate titanate thin/thick films using a novel scanning Mach-Zehnder interferometer. Thin Solid Films 493(1–2), 313–318 (2005)

    Google Scholar 

  22. Lee, K.Y., Case, E.D.: Effects of adhesion on the effective Young’s modulus in glass slide/glue laminates. J. Mater. Sci. Eng. 31(9), 2241–2251 (1996)

    Google Scholar 

  23. Moilanen, H., Leppävuori, S.: Laser interferometric measurement of displacement-field characteristics of piezoelectric actuators and actuator materials. Sens. Actuators A 92(1), 326–334 (2001)

    Article  Google Scholar 

  24. Lefki, K., Dormans, G.: Measurement of piezoelectric coefficients of ferroelectric thin films. J. Appl. Phys. 76(3), 1764–1767 (1994)

    Article  Google Scholar 

  25. Wang, Q.-M., Cross, L.E.: Performance analysis of piezoelectric cantilever bending actuators. Ferroelectrics 215(1), 187–213 (1998)

    Google Scholar 

  26. Smits, J., Choi, W.: The constituent equations of piezoelectric heterogeneous bimorphs. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(3), 256–270 (1991)

    Article  Google Scholar 

  27. Damjanovic, D., Brooks K.G., Kholkin, A., Kohli, M., Maeder, T., Muralt, P., Setter, N.: Properties of piezoelectric pzt thin films for microactuator applications. In: MRS Proceedings, vol. 360, Jan 1994

    Google Scholar 

  28. Smits, J., Choi, W.: The constituent equations of piezoelectric heterogeneous bimorphs. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38(3), 256–270 (1991)

    Article  Google Scholar 

  29. Muensit, S., Guy, I.L.: The piezoelectric coefficient of gallium nitride thin films. Appl. Phys. Lett. 72, 1896 (1998)

    Article  Google Scholar 

  30. Lueng, C.M., Chan, H., Surya, C., Fong, W.K., Choy, C.L., Chow, P., Rosamond, M.: Piezoelectric coefficient of gan measured by laser interferometry. J. Non-Cryst. Solids 254(1), 123–127 (1999)

    Article  Google Scholar 

  31. Fattinger, G.G., Tikka, P.T.: Modified mach-zender laser interferometer for probing bulk acoustic waves. Appl. Phys. Lett. 79(3), 290 (2001)

    Article  Google Scholar 

  32. Knuuttila, J., Tikka, P., Plessky, V.P., Thorvaldsson, T., Salomaa, M.M.: Recent advances in laser-interferometric investigations of SAW devices, Ultrasonics symposium. In: Proceedings of IEEE, vol. 1, pp. 161–164 (1997)

    Google Scholar 

  33. Zhang, Q.M., Pan, W.Y., Jang, S., Cross, L.E.: Domain wall excitations and their contributions to the weaksignal response of doped lead zirconate titanate ceramics. Appl. Phys. Lett. 64(11), 6445–6451 (1988)

    Google Scholar 

  34. Zhang, Q., Wang, H., Kim, N., Cross, L.: Direct evaluation of domainwall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconatetitanate ceramics. Appl. Phys. Lett. 75(1), 454–459 (1994)

    Google Scholar 

  35. Kholkin, A.L., Colla, E., Brooks, K., Muralt, P., Kohli, M., Maeder, T., Taylor, D., Setter, N.: Interferometric study of piezoelectric degradation in ferroelectric thin films. Microelectron. Eng. 29(1), 261–264 (1995)

    Article  Google Scholar 

  36. Kloos, G.: Design of a mach-zehnder interferometer for the measurement of electrostrictive strains. Meas. Sci. Technol. 7, 1027 (1996)

    Article  Google Scholar 

  37. Maiwa, H., Christman, J., Kim, S., Kim, D.J., Maria, J.P., Chen, B., Streiffer, S., Kingon, A.: Measurement of piezoelectric displacements of pb (zr, ti) o3 thin films using a double-beam interferometer. Jpn. J. Appl. Phys. 38, 5402 (1999)

    Article  Google Scholar 

  38. Taylor, D.V., Damjanovic, D.: Piezoelectric properties of rhombohedral Pb(Zr, Ti)O[sub 3] thin films with (100), (111), and “random” crystallographic orientation. Appl. Phys. Lett. 76(12), 1615 (2000)

    Google Scholar 

  39. Xu, F., Trolier-McKinstry, S., Ren, W., Xu, B., Xie, Z.L., Hemker, K.J.: Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films. J. Appl. Phys. 89(2), 1336 (2001)

    Article  Google Scholar 

  40. Gerber, P., Roelofs, A., Kügeler, C., Böttger, U., Waser, R., Prume, K.: Effects of the top-electrode size on the piezoelectric properties (d[sub 33] and s) of lead zirconate titanate thin films. J. Appl. Phys. 96(5), 2800 (2004)

    Article  Google Scholar 

  41. Huang, Z., Zhang, Q., Corkovic, S., Dorey, R., Whatmore, R.: Comparative measurements of piezoelectric coefficient of pzt films by berlincourt, interferometer, and vibrometer methods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(12), 2287–2293 (2006)

    Article  Google Scholar 

  42. Fernandes, J.R., de Sá, F.A., Santos, J.L., Joanni, E.: Optical fiber interferometer for measuring the d[sub 33] coefficient of piezoelectric thin films with compensation of substrate bending. Rev. Sci. Instrum. 73(5), 2073 (2002)

    Article  Google Scholar 

  43. Nosek, J., Burianova, L., Sulc, M., Soyer, C., Cattan, E., Remiens, D.: About the measurements of the d 33 piezoelectric coefficient of the PZT film-Si/SiO 2 /Ti/Pt substrates using an optical cryostat. Ferroelectrics 292(1), 103–109 (2003)

    Google Scholar 

  44. Sulc, M., Erhart, J., Nosek, J.: Interferometric measurement of the temperature dependence of piezoelectric coefficients for PZN-8Crystals. Ferroelectrics 293(1), 283–290 (2003)

    Google Scholar 

  45. Huang, Z., Leighton, G., Wright, R., Duval, F., Chung, H.C., Kirby, P., Whatmore, R.W.: Determination of piezoelectric coefficients and elastic constant of thin films by laser scanning vibrometry techniques. Sens. Actuators A 135(2), 660–665 ( 2007)

    Google Scholar 

  46. Royer, D., Kmetik, V.: Measurement of piezoelectric constants using an optical heterodyne interferometer. Electron. Lett. 28(19), 1828–1830 (1992)

    Article  Google Scholar 

  47. Lian, L.: Stress effects in sol-gel derived ferroelectric thin films. J. Appl. Phys. 95(2), 629 (2004)

    Article  Google Scholar 

  48. Lian, L., Sottos, N.: Effects of thickness on the piezoelectric and dielectric properties of lead zirconate titanate thin films. J. Appl. Phys. 87, 3941 (2000)

    Article  Google Scholar 

  49. Yao, K., Tay, F.E.H.: Measurement of longitudinal piezoelectric coefficient of thin films by a laser-scanning vibrometer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(2), 113–116 (2003)

    Article  Google Scholar 

  50. Yao, K., Shannigrahi, S., Tay, F.E.H.: Characterisation of piezoelectric thin films by areal laser scanning. Sens. Actuators A 112(1), 127–133 ( 2004)

    Google Scholar 

  51. Li, J.-F., Viehland, D.D., Tani, T., Lakeman, C.D.E., Payne, D.A.: Piezoelectric properties of sol-gel-derived ferroelectric and antiferroelectric thin layers. J. Appl. Phys. 75(1), 442 (1994)

    Article  Google Scholar 

  52. Kreis, T.: Holographic Interferometry: Principles and Methods, Ser. Akademie Verlag, Akademie Verlag series in optical metrology (1996)

    Google Scholar 

  53. De Nicola, S., Ferraro, P.: Fourier transform method of fringe analysis for moiré interferometry. J. Opt. A: Pure Appl. Opt. 2(3), 228 (2000)

    Article  Google Scholar 

  54. Liu, Z., Fang, D., Xie, H., Lee, J.J.: Study of effect of 90\(\,^{\circ }\) domain switching on ferroelectric ceramics fracture using the moiré interferometry. Acta Mater. 55(11), 3911–3922 (2007)

    Google Scholar 

  55. Watanabe, Y., Tsuda, T., Ishii, S., Goka, S., Sekimoto, H.: Method based on laser speckle interferometry for measuring absolute in-plane vibrational distribution of piezoelectric resonators. Jpn. J. Appl. Phys. 45(5B), 4585–4587 (2006)

    Google Scholar 

  56. Lin, H.-Y., Huang, J.H., Ma, C.C.: Vibration analysis of piezoelectric materials by optical methods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(8), 1139–1149 (2002)

    Article  Google Scholar 

  57. Huang, C.-H., Lin, Y.-C., Ma, C.C.: Theoretical analysis and experimental measurement for resonant vibration of piezoceramic circular plates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(1), 12–24 (2004)

    Article  Google Scholar 

  58. Ma, C.C., Lin, Y.-C., Huang, Y.-H., Lin, H.-Y.: Experimental measurement and numerical analysis on resonant characteristics of cantilever plates for piezoceramic bimorphs. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(2), 227–239 (2007)

    Article  Google Scholar 

  59. Jones, R., Wykes, C.: Holographic and Speckle Interferometry, ser. Cambridge University Press, Cambridge Studies in Modern Optics (1989)

    Book  Google Scholar 

  60. Zarnik, M.S., Belavič, D., Macek, S.: Evaluation of the constitutive material parameters for the numerical modelling of structures with lead-zirconate-titanate thick films. Sens. Actuators A 136(2), 618–628 (2007)

    Google Scholar 

  61. Chima-Okereke, C., Bushby, A.J., Reece, M.J., Whatmore, R.W., Zhang, Q.: Experimental, analytical, and finite element analyses of nanoindentation of multilayer PZT/Pt/SiO2 thin film systems on silicon wafers. J. Mater. Res. 21(02), 409–419 (2011)

    Google Scholar 

  62. Pardo, L., Algueró, M., Brebøl, K.: A non-Standard shear resonator for the matrix characterization of piezoceramics and its validation study by finite element analysis. J. Phys. D: Appl. Phys. 40(7), 2162–2169 (2007)

    Google Scholar 

  63. Leighton, G.J.T., Huang, Z.: Accurate measurement of the piezoelectric coefficient of thin films by eliminating the substrate bending effect using spatial scanning laser vibrometry. Smart Mater. Struct. 19, 065011 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaorong Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 © Queen's Printer and Controller of HMSO

About this chapter

Cite this chapter

Huang, Z., Leighton, G. (2014). Interferometry for Piezoelectric Materials and Thin Films. In: Cain, M. (eds) Characterisation of Ferroelectric Bulk Materials and Thin Films. Springer Series in Measurement Science and Technology, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9311-1_5

Download citation

Publish with us

Policies and ethics