Skip to main content

Abstract

The primary function of the immune system is to protect the host against pathogens. Success of vaccination against infectious diseases has led to efforts to develop strategies to activate a specific immune response against cancer. However, this task has proved to be very challenging. In the last few years there has been rapid progress in the identification of the molecular mechanisms by which the immune system detects pathogens and initiates immune responses. By contrast, recognition of neoplastic cells lags behind, and induction of specific anti-tumour immunity is even less understood. In this chapter we discuss evidence for the role of the immune system in the control of tumour growth. We also review recent advances in the understanding of mechanisms that can alert the immune system to the presence of neoplastic lesions, and we discuss recent data on the immunogenicity of tumour cells and their interaction with antigen presenting cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ada G (2001) Vaccines and vaccination. N Engl J Med 345:1042–1053

    Article  PubMed  CAS  Google Scholar 

  • Ada GL (1990) The immunological principles of vaccination. Lancet 335:523–526

    Article  PubMed  CAS  Google Scholar 

  • Adema GJ, de Vries IJ, Punt CJ et al (2005) Migration of dendritic cell based cancer vaccines: in vivo veritas? Curr Opin Immunol 17:170–174

    Article  PubMed  CAS  Google Scholar 

  • Albert ML, Darnell JC, Bender A et al (1998) Tumour-specific killer cells in paraneoplastic cerebellar degeneration. Nat Med 4:1321–1324

    Article  PubMed  CAS  Google Scholar 

  • Albert ML, Darnell RB (2004) Paraneoplastic neurological degenerations: keys to tumour immunity. Nat Rev Cancer 4:36–44

    Article  PubMed  CAS  Google Scholar 

  • Apetoh L, Ghiringhelli F, Tesniere A et al (2007a) Toll-like receptor 4-dependent contribution of the immune system to anti-cancer chemotherapy and radiotherapy. Nat Med 13:1050–1059

    Article  CAS  Google Scholar 

  • Apetoh L, Obeid M, Tesniere A et al (2007b) Immunogenic chemotherapy: discovery of a critical protein through proteomic analyses of tumour cells. Cancer Genomics Proteomics 4:65–70

    CAS  Google Scholar 

  • Arispe N, Doh M, Simakova O et al (2004) Hsc70 and Hsp70 interact with phosphatidylserine on the surface of PC12 cells resulting in a decrease of viability. FASEB J 18:1636–1645

    Article  PubMed  CAS  Google Scholar 

  • Bach EA, Aguet M, Schreiber RD (1997) The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol 15:563–591

    Article  PubMed  CAS  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  PubMed  CAS  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K et al (2005) DNA damage response as a candidate anti-cancer barrier in early human tumourigenesis. Nature 434:864–870

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Binder RJ, Ramalingam T et al (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303–313

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Binder RJ, Suto R et al (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12:1539–1546

    Article  PubMed  CAS  Google Scholar 

  • Becker T, Hartl FU, Wieland F (2002) CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 158:1277–1285

    Article  PubMed  CAS  Google Scholar 

  • Beere HM, Wolf BB, Cain K et al (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475

    Article  PubMed  CAS  Google Scholar 

  • Bender A, Sapp M, Schuler G et al (1996) Improved methods for the generation of dendritic cells from non-proliferating progenitors in human blood. J Immunol Methods 196:121–135

    Article  PubMed  CAS  Google Scholar 

  • Binder RJ, Anderson KM, Basu S et al (2000a) Cutting edge: heat shock protein gp96 induces maturation and migration of CD11c+ cells in vivo. J Immunol 165:6029–6035

    CAS  Google Scholar 

  • Binder RJ, Han DK, Srivastava PK (2000b) CD91: a receptor for heat shock protein gp96. Nat Immunol 1:151–155

    Article  CAS  Google Scholar 

  • Binder RJ, Harris ML, Menoret A et al (2000c) Saturation, competition, and specificity in interaction of heat shock proteins (hsp) gp96, hsp90, and hsp70 with CD11b+ cells. J Immunol 165:2582–2587

    CAS  Google Scholar 

  • Binder RJ, Kelly JB, 3rd, Vatner RE et al (2007) Specific immunogenicity of heat shock protein gp96 derives from chaperoned antigenic peptides and not from contaminating proteins. J Immunol 179:7254–7261

    PubMed  CAS  Google Scholar 

  • Binder RJ, Srivastava PK (2004) Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proc Natl Acad Sci U S A 101:6128–6133

    Article  PubMed  CAS  Google Scholar 

  • Binder RJ, Srivastava PK (2005) Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol 6:593–599

    Article  PubMed  CAS  Google Scholar 

  • Burdelya L, Kujawski M, Niu G et al (2005) Stat3 activity in melanoma cells affects migration of immune effector cells and nitric oxide-mediated anti-tumour effects. J Immunol 174:3925–3931

    PubMed  CAS  Google Scholar 

  • Burnet FM (1970) The concept of immunological surveillance. Prog Exp Tumour Res 13:1–27

    CAS  Google Scholar 

  • Bushley AW, Ferrell R, McDuffie K et al (2004) Polymorphisms of interleukin (IL)-1alpha, IL- 1beta, IL-6, IL-10, and IL-18 and the risk of ovarian cancer. Gynecol Oncol 95:672–679

    Article  PubMed  CAS  Google Scholar 

  • Casares N, Pequignot MO, Tesniere A et al (2005) Caspase-dependent immunogenicity of doxorubicin- induced tumour cell death. J Exp Med 202:1691–1701

    Article  PubMed  CAS  Google Scholar 

  • Castedo M, Perfettini JL, Roumier T et al (2004a) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23:2825–2837

    Article  CAS  Google Scholar 

  • Castedo M, Perfettini JL, Roumier T et al (2004b) Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene 23:4362–4370

    Article  CAS  Google Scholar 

  • Castedo M, Perfettini JL, Roumier T et al (2004c) The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe. Oncogene 23:4353–4361

    Article  CAS  Google Scholar 

  • Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  PubMed  CAS  Google Scholar 

  • Curiel TJ, Wei S, Dong H et al (2003) Blockade of B7-H1 improves myeloid dendritic cell-mediated anti-tumour immunity. Nat Med 9:562–567

    Article  PubMed  CAS  Google Scholar 

  • Dai J, Liu B, Caudill MM et al (2003) Cell surface expression of heat shock protein gp96 enhances cross-presentation of cellular antigens and the generation of tumour-specific T cell memory. Cancer Immun 3:1

    PubMed  Google Scholar 

  • Darnell RB, Posner JB (2003a) Observing the invisible: successful tumour immunity in humans. Nat Immunol 4:201

    Article  CAS  Google Scholar 

  • Darnell RB, Posner JB (2003b) Paraneoplastic syndromes involving the nervous system. N Engl J Med 349:1543–1554

    Article  CAS  Google Scholar 

  • De Vries IJ, Bernsen MR, van Geloof WL et al (2007) In situ detection of antigen-specific T cells in cryo-sections using MHC class I tetramers after dendritic cell vaccination of melanoma patients. Cancer Immunol Immunother 56:1667–1676

    Article  PubMed  CAS  Google Scholar 

  • Demaria S, Santori FR, Ng B et al (2005) Select forms of tumour cell apoptosis induce dendritic cell maturation. J Leukoc Biol 77:361–368

    Article  PubMed  CAS  Google Scholar 

  • Dhodapkar MV (2005) Harnessing host immune responses to preneoplasia: promise and challenges. Cancer Immunol Immunother 54:409–413

    Article  PubMed  Google Scholar 

  • Dhodapkar MV, Bhardwaj N (2000) Active immunization of humans with dendritic cells. J Clin Immunol 20:167–174

    Article  PubMed  CAS  Google Scholar 

  • Dhodapkar MV, Dhodapkar KM, Palucka AK (2008) Interactions of tumour cells with dendritic cells: balancing immunity and tolerance. Cell Death Differ 15:39–50

    Article  PubMed  CAS  Google Scholar 

  • Dhodapkar MV, Krasovsky J, Olson K (2002) T cells from the tumour microenvironment of patients with progressive myeloma can generate strong, tumour-specific cytolytic responses to autologous, tumour-loaded dendritic cells. Proc Natl Acad Sci U S A 99:13009–13013

    Article  PubMed  CAS  Google Scholar 

  • Dhodapkar MV, Krasovsky J, Osman K et al (2003) Vigorous premalignancy-specific effector T cell response in the bone marrow of patients with monoclonal gammopathy. J Exp Med 198:1753–1757

    Article  PubMed  CAS  Google Scholar 

  • Dhodapkar MV, Steinman RM (2002) Antigen-bearing immature dendritic cells induce peptidespecific CD8(+) regulatory T cells in vivo in humans. Blood 100:174–177

    Article  PubMed  CAS  Google Scholar 

  • Dhodapkar MV, Steinman RM, Krasovsky J et al (2001) Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 193:233–238

    Article  PubMed  CAS  Google Scholar 

  • Dighe AS, Richards E, Old LJ et al (1994) Enhanced in vivo growth and resistance to rejection of tumour cells expressing dominant negative IFN gamma receptors. Immunity 1:447–456

    Article  PubMed  CAS  Google Scholar 

  • Dunn GP, Bruce AT, Ikeda H et al (2002) Cancer immunoediting: from immunosurveillance to tumour escape. Nat Immunol 3:991–998

    Article  PubMed  CAS  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD (2004a) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148

    Article  CAS  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD (2004b) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360

    Article  CAS  Google Scholar 

  • Edwards AD, Manickasingham SP, Sporri R et al (2002) Microbial recognition via Toll-like receptor- dependent and -independent pathways determines the cytokine response of murine dendritic cell subsets to CD40 triggering. J Immunol 169:3652–3660

    PubMed  CAS  Google Scholar 

  • Fadok VA, Bratton DL, Guthrie L et al (2001) Differential effects of apoptotic vs. lysed cells on macrophage production of cytokines: role of proteases. J Immunol 166:6847–6854

    PubMed  CAS  Google Scholar 

  • Figdor CG, de Vries IJ, Lesterhuis WJ et al (2004) Dendritic cell immunotherapy: mapping the ay. Nat Med 10:475–480

    Article  PubMed  CAS  Google Scholar 

  • Frenzel H, Hoffmann B, Brocks C et al (2006) Toll-like receptor interference in myeloid dendritic cells through head and neck cancer. Anticancer Res 26:4409–4413

    PubMed  CAS  Google Scholar 

  • Galluzzi L, Maiuri MC, Vitale I et al (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14:1237–1243

    Article  PubMed  CAS  Google Scholar 

  • Gardai SJ, Bratton DL, Ogden CA et al (2006) Recognition ligands on apoptotic cells: a perspective. J Leukocyte Biol 79:896–903

    Article  PubMed  CAS  Google Scholar 

  • Garrido C, Fromentin A, Bonnotte B et al (1998) Heat shock protein 27 enhances the tumourigenicity of immunogenic rat colon carcinoma cell clones. Cancer Res 58:5495–5499

    PubMed  CAS  Google Scholar 

  • Gasser S, Orsulic S, Brown EJ et al (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436:1186–1190

    Article  PubMed  CAS  Google Scholar 

  • Gerecitano J, Goy A, Wright J et al (2006) Drug-induced cutaneous vasculitis in patients with non-Hodgkin lymphoma treated with the novel proteasome inhibitor bortezomib: a possible surrogate marker of response? Br J Haematol 134:391–398

    Article  PubMed  CAS  Google Scholar 

  • Gilboa E (2004) The promise of cancer vaccines. Nat Rev Cancer 4:401–411

    Article  PubMed  CAS  Google Scholar 

  • Gorgoulis VG, Vassiliou LV, Karakaidos P et al (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434:907–913

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa Y, Takeda K, Yagita H et al (2002) IFN-gamma-mediated inhibition of tumour angiogenesis by natural killer T-cell ligand, alpha-galactosylceramide. Blood 100:1728–1733

    PubMed  CAS  Google Scholar 

  • Hung K, Hayashi R, Lafond-Walker A et al (1998) The central role of CD4(+) T cells in the antitumour immune response. J Exp Med 188:2357–2368

    Article  PubMed  CAS  Google Scholar 

  • Cheng F, Wang HW, Cuenca A et al (2003) A critical role for Stat3 signaling in immune tolerance. Immunity 19:425–436

    Article  PubMed  CAS  Google Scholar 

  • Ishii KJ, Suzuki K, Coban C et al (2001) Genomic DNA released by dying cells induces the maturation of APCs. J Immunol 167:2602–2607

    PubMed  CAS  Google Scholar 

  • Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995

    Article  PubMed  CAS  Google Scholar 

  • Jaattela M (1995) Over-expression of hsp70 confers tumourigenicity to mouse fibrosarcoma cells. Int J Cancer 60:689–693

    Article  PubMed  CAS  Google Scholar 

  • Janeway CA, Jr., Goodnow CC, Medzhitov R (1996) Danger - pathogen on the premises! Immunological tolerance. Curr Biol 6:519–522

    Article  PubMed  CAS  Google Scholar 

  • Kaplan DH, Shankaran V, Dighe AS et al (1998) Demonstration of an interferon gamma-dependent tumour surveillance system in immunocompetent mice. Proc Natl Acad Sci U S A 95:7556–7561

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, El-Deiry WS, Golstein P et al (2005) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 12 Suppl 2:1463–1467

    Article  CAS  Google Scholar 

  • Krysko DV, D’Herde K, Vandenabeele P (2006) Clearance of apoptotic and necrotic cells and its immunological consequences. Apoptosis 11:1709–1726

    Article  PubMed  Google Scholar 

  • Krysko DV, Leybaert L, Vandenabeele P et al (2005) Gap junctions and the propagation of cell survival and cell death signals. Apoptosis 10:459–469

    Article  PubMed  CAS  Google Scholar 

  • Kyle RA, Rajkumar SV (1999) Monoclonal gammopathies of undetermined significance. Hematol Oncol Clin North Am 13:1181–1202

    Article  PubMed  CAS  Google Scholar 

  • Labarriere N, Bretaudeau L, Gervois N et al (2002) Apoptotic body-loaded dendritic cells efficiently cross-prime cytotoxic T lymphocytes specific for NA17-A antigen but not for Melan- A/MART-1 antigen. Int J Cancer 101:280–286

    Article  PubMed  CAS  Google Scholar 

  • Lech-Maranda E, Baseggio L, Bienvenu J et al (2004) Interleukin-10 gene promoter polymorphisms influence the clinical outcome of diffuse large B-cell lymphoma. Blood 103:3529–3534

    Article  PubMed  CAS  Google Scholar 

  • Liyanage UK, Moore TT, Joo HG et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumour microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–2761

    PubMed  CAS  Google Scholar 

  • Lollini PL, Cavallo F, Nanni P et al (2006) Vaccines for tumour prevention. Nat Rev Cancer 6:204–216

    Article  PubMed  CAS  Google Scholar 

  • Lollini PL, De Giovanni C, Pannellini T et al (2005) Cancer immunoprevention. Future Oncol 1:57–66

    Article  PubMed  CAS  Google Scholar 

  • Lollini PL, Forni G (2002) Anti-tumour vaccines: is it possible to prevent a tumour? Cancer Immunol Immunother 51:409–416

    Google Scholar 

  • Lollini PL, Forni G (2003) Cancer immunoprevention: tracking down persistent tumour antigens. Trends Immunol 24:62–66

    Article  PubMed  CAS  Google Scholar 

  • Maiuri MC, Zalckvar E, Kimchi A et al (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752

    Article  PubMed  CAS  Google Scholar 

  • Marincola FM, Jaffee EM, Hicklin DJ et al (2000) Escape of human solid tumours from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273

    Article  PubMed  CAS  Google Scholar 

  • Martinon F, Petrilli V, Mayor A et al (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241

    Article  PubMed  CAS  Google Scholar 

  • Masse D, Ebstein F, Bougras G et al (2004) Increased expression of inducible HSP70 in apoptotic cells is correlated with their efficacy for anti-tumour vaccine therapy. Int J Cancer 111:575–583

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R, Janeway C, Jr. (2000a) Innate immune recognition: mechanisms and pathways. Immunol Rev 173:89–97

    Article  CAS  Google Scholar 

  • Medzhitov R, Janeway C, Jr. (2000b) Innate immunity. N Engl J Med 343:338–344

    Article  CAS  Google Scholar 

  • Medzhitov R, Janeway CA, Jr. (1997a) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9:4–9

    Article  CAS  Google Scholar 

  • Medzhitov R, Janeway CA, Jr. (1997b) Innate immunity: the virtues of a non-clonal system of recognition. Cell 91:295–298

    Article  CAS  Google Scholar 

  • Mumberg D, Monach PA, Wanderling S et al (1999) CD4(+) T cells eliminate MHC class II-negative cancer cells in vivo by indirect effects of IFN-gamma. Proc Natl A cad Sci U S A 96:8633–8638

    Article  CAS  Google Scholar 

  • Obeid M, Tesniere A, Ghiringhelli F et al (2007a) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61

    Article  CAS  Google Scholar 

  • Obeid M, Tesniere A, Panaretakis T et al (2007b) Ecto-calreticulin in immunogenic chemotherapy. Immunol Rev 220:22–34

    Article  CAS  Google Scholar 

  • Pardoll DM (1998) Cancer vaccines. Nat Med 4:525–531

    Article  PubMed  CAS  Google Scholar 

  • Park JS, Gamboni-Robertson F, He Q et al (2006) High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol 290:C917–C924

    Article  PubMed  CAS  Google Scholar 

  • Park JS, Svetkauskaite D, He Q et al (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279:7370–7377

    Article  PubMed  CAS  Google Scholar 

  • Pasare C, Medzhitov R (2004a) Toll-like receptors and acquired immunity. Semin Immunol 16:23–26

    Article  CAS  Google Scholar 

  • Pasare C, Medzhitov R (2004b) Toll-like receptors: linking innate and adaptive immunity. Microbes Infect 6:1382–1387

    Article  CAS  Google Scholar 

  • Reis e Sousa C, Diebold SD, Edwards AD et al (2003) Regulation of dendritic cell function by microbial stimuli. Pathol Biol (Paris) 51:67–68

    CAS  Google Scholar 

  • Rock KL, Hearn A, Chen et al (2005) Natural endogenous adjuvants. Springer Semin Immunopathol 26:231–246

    Article  PubMed  Google Scholar 

  • Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915

    Article  PubMed  CAS  Google Scholar 

  • Rovere-Querini P, Capobianco A, Scaffidi P et al (2004) HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep 5:825–830

    Article  PubMed  CAS  Google Scholar 

  • Sauter B, Albert ML, Francisco L et al (2000) Consequences of cell death: exposure to necrotic tumour cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 191:423–434

    Article  PubMed  CAS  Google Scholar 

  • Savill J, Dransfield I, Gregory C et al (2002) A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2:965–975

    Article  PubMed  CAS  Google Scholar 

  • Savill J, Fadok V (2000) Corpse clearance defines the meaning of cell death. Nature 407:784–788

    Article  PubMed  CAS  Google Scholar 

  • Savill J, Fadok V, Henson P et al (1993) Phagocyte recognition of cells undergoing apoptosis. Immunol Today 14:131–136

    Article  PubMed  CAS  Google Scholar 

  • Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    Article  PubMed  CAS  Google Scholar 

  • Shankaran V, Ikeda H, Bruce AT et al (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Cao T, Connolly JE et al (2006) Hyperthermia enhances CTL cross-priming. J Immunol 176:2134–2141

    PubMed  CAS  Google Scholar 

  • Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Rock KL (2002) Cell death releases endogenous adjuvants that selectively enhance immune surveillance of particulate antigens. Eur J Immunol 32:155–162

    Article  PubMed  CAS  Google Scholar 

  • Shinkai Y, Rathbun G, Lam KP et al (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68:855–867

    Article  PubMed  CAS  Google Scholar 

  • Shortman K, Liu YJ (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2:151–161

    Article  PubMed  CAS  Google Scholar 

  • Scheibner KA, Lutz MA, Boodoo S et al (2006) Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol 177:1272–1281

    PubMed  CAS  Google Scholar 

  • Schnurr M, Scholz C, Rothenfusser S et al (2002) Apoptotic pancreatic tumour cells are superior to cell lysates in promoting cross-priming of cytotoxic T cells and activate NK and gammadelta T cells. Cancer Res 62:2347–2352

    PubMed  CAS  Google Scholar 

  • Singh-Jasuja H, Toes RE, Spee P et al (2000) Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J Exp Med 191:1965–1974

    Article  PubMed  CAS  Google Scholar 

  • Smyth MJ, Crowe NY, Godfrey DI (2001) NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int Immunol 13:459–463

    Article  PubMed  CAS  Google Scholar 

  • Smyth MJ, Thia KY, Street SE et al (2000) Differential tumour surveillance by natural killer (NK) and NKT cells. J Exp Med 191:661–668

    Article  PubMed  CAS  Google Scholar 

  • Somersan S, Larsson M, Fonteneau JF et al (2001) Primary tumour tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J Immunol 167:4844–4852

    PubMed  CAS  Google Scholar 

  • Spisek R (2006) Immunoprevention of cancer: time to reconsider timing of vaccination against cancer. Expert Rev Anticancer Ther 6:1689–1691

    Article  PubMed  Google Scholar 

  • Spisek R, Brazova J, Rozkova D et al (2004) Maturation of dendritic cells by bacterial immunomodulators. Vaccine 22:2761–2768

    Article  PubMed  CAS  Google Scholar 

  • Spisek R, Dhodapkar MV (2006) Immunoprevention of cancer. Hematol Oncol Clin North Am 20:735–750

    Article  PubMed  Google Scholar 

  • Spisek R, Charalambous A, Mazumder A et al (2007) Bortezomib enhances dendritic cell (DC) mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumour cells: therapeutic implications. Blood

    Google Scholar 

  • Spisek R, Chevallier P, Morineau N et al (2002) Induction of leukemia-specific cytotoxic response by cross-presentation of late-apoptotic leukemic blasts by autologous dendritic cells of nonleukemic origin. Cancer Res 62:2861–2868

    PubMed  CAS  Google Scholar 

  • Sporri R, Reis e Sousa C (2005) Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat Immunol 6:163–170

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Bonifaz L, Fujii S et al (2005) The innate functions of dendritic cells in peripheral lymphoid tissues. Adv Exp Med Biol 560:83–97

    Article  PubMed  CAS  Google Scholar 

  • Street SE, Cretney E, Smyth MJ (2001) Perforin and interferon-gamma activities independently control tumour initiation, growth, and metastasis. Blood 97:192–197

    Article  PubMed  CAS  Google Scholar 

  • Stutman O (1975) Immunodepression and malignancy. Adv Cancer Res 22:261–422

    Article  PubMed  CAS  Google Scholar 

  • Tacken PJ, de Vries IJ, Torensma R et al (2007) Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 7:790–802

    Article  PubMed  CAS  Google Scholar 

  • Tesniere A, Panaretakis T, Kepp O et al (2008) Molecular characteristics of immunogenic cancer cell death. Cell Death Differ 15:3–12

    Article  PubMed  CAS  Google Scholar 

  • Tobiasova Z, Pospisilova D, Miller AM et al (2007) In vitro assessment of dendritic cells pulsed with apoptotic tumour cells as a vaccine for ovarian cancer patients. Clin Immunol 122:18–27

    Article  PubMed  CAS  Google Scholar 

  • Udono H, Srivastava PK (1993) Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178:1391–1396

    Article  PubMed  CAS  Google Scholar 

  • Uyttenhove C, Pilotte L, Theate I et al (2003) Evidence for a tumoural immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–1274

    Article  PubMed  CAS  Google Scholar 

  • Van Den Broek ME, Kagi D, Ossendorp F et al (1996) Decreased tumour surveillance in perforindeficient mice. J Exp Med 184:1781–1790

    Article  PubMed  Google Scholar 

  • Verdijk P, Scheenen TW, Lesterhuis WJ et al (2007) Sensitivity of magnetic resonance imaging of dendritic cells for in vivo tracking of cellular cancer vaccines. Int J Cancer 120:978–984

    Article  PubMed  CAS  Google Scholar 

  • Walport MJ (2000) Lupus, DNase and defective disposal of cellular debris. Nat Genet 25:135–136

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Bloom O, Zhang M et al (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–251

    Article  PubMed  CAS  Google Scholar 

  • Wang HY, Lee DA, Peng G et al (2004a) Tumour-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy. Immunity 20:107–118

    Article  CAS  Google Scholar 

  • Wang T, Niu G, Kortylewski M et al (2004b) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumour cells. Nat Med 10:48–54

    Article  CAS  Google Scholar 

  • Willimsky G, Blankenstein T (2005) Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437:141–146

    Article  PubMed  CAS  Google Scholar 

  • Winau F, Weber S, Sad S et al (2006) Apoptotic vesicles crossprime CD8 T cells and protect against tuberculosis. Immunity 24:105–117

    Article  PubMed  CAS  Google Scholar 

  • Wong LH, Krauer KG, Hatzinisiriou I et al (1997) Interferon-resistant human melanoma cells are deficient in ISGF3 components, STAT1, STAT2, and p48-ISGF3gamma. J Biol Chem 272:28779–28785

    Article  PubMed  CAS  Google Scholar 

  • Woo EY, Chu CS, Goletz TJ et al (2001) Regulatory CD4(+)CD25(+) T cells in tumours from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61:4766–4772

    PubMed  CAS  Google Scholar 

  • Yamazaki S, Bonito AJ, Spisek R et al (2007) Dendritic cells are specialized accessory cells along with TGF-{beta} for the differentiation of Foxp3+ CD4+ regulatory T cells from peripheral Foxp3- precursors. Blood

    Google Scholar 

  • Zaft T, Sapoznikov A, Krauthgamer R et al (2005) CD11chigh dendritic cell ablation impairs lymphopenia- driven proliferation of naive and memory CD8+ T cells. J Immunol 175:6428–6435

    PubMed  CAS  Google Scholar 

  • Zitvogel L, Apetoh L, Ghiringhelli F et al (2008) Immunological aspects of cancer chemotherapy. Nat Rev Immunol 8:59–73

    Article  PubMed  CAS  Google Scholar 

  • Zitvogel L, Casares N, Pequignot MO et al (2004) Immune response against dying tumour cells. Adv Immunol 84:131–179

    Article  PubMed  CAS  Google Scholar 

  • Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6:715–727

    Article  PubMed  CAS  Google Scholar 

  • Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bartůňková, J., Špíšek, R. (2009). Impact of Tumour Cell Death on the Activation of Anti-tumour Immune Response. In: Krysko, D.V., Vandenabeele, P. (eds) Phagocytosis of Dying Cells: From Molecular Mechanisms to Human Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9293-0_12

Download citation

Publish with us

Policies and ethics