Skip to main content
  • 854 Accesses

Abstract

Death-Associated Molecular Patterns (DAMPs) maintain peripheral tolerance and immune suppression following binding and phagocytosis of apoptotic cells. In systemic lupus erythematosus (SLE), a multisystem autoimmune disease of unknown etiology, alteration in cell death patterns, apoptotic cell recognition and DAMP signalling generate the characteristic pathogenic autoantibodies to a diverse group of autoantigens.

The normal innate immune response to cell death and the abnormalities identified in SLE are presented, along with possible relations to mechanisms of autoantibody generation in SLE, the phenomenon of drug-induced lupus, and the paradoxical role of complement in the clearance of dying cells and in disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ablin J, Verbovetski I, Trahtemberg U et al (2005) Quinidine and procainamide inhibit murine macrophage uptake of apoptotic and necrotic cells: A novel contributing mechanism of druginduced- lupus. Apoptosis 10(5):1009–1018

    Article  PubMed  CAS  Google Scholar 

  • Aderem AA, Wright SD, Silverstein SC et al (1985) Ligated complement receptors do not activate the arachidonic acid cascade in resident peritoneal macrophages. J Exp Med 161(3):617–622

    Article  PubMed  CAS  Google Scholar 

  • Alarcon-Segovia D (1976) Drug-induced antinuclear antibodies and lupus syndromes. Drugs 12(1):69–77

    Article  Google Scholar 

  • Albert ML, Darnell JC, Bender A et al (1998a) Tumour-specific killer cells in paraneoplastic cerebellar degeneration. Nat Med 4(11):1321–1324

    Article  CAS  Google Scholar 

  • Albert ML, Pearce SF, Francisco LM et al (1998b) immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and cd36, and cross-present antigens to cytotoxic t lymphocytes. j exp med 188(7):1359–1368

    Article  CAS  Google Scholar 

  • Amarilyo G, Verbovetski I, Atallah M et al Cd11b/cd18 mediates a distinct anti-inflammatory response and transcriptional nf-kappab-dependent blockade following interaction, but not engulfment, with ic3b-opsonized apoptotic cells. Submitted 2008

    Google Scholar 

  • Anderson HA, Maylock CA, Williams JA et al (2003) Serum-derived protein s binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nat Immunol 4(1):87–91

    Article  PubMed  CAS  Google Scholar 

  • Arbuckle MR, McClain MT, Rubertone MV et al (2003) Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 349(16):1526–1533

    Article  PubMed  CAS  Google Scholar 

  • Banchereau J, Pulendran B, Steinman R et al (2000) Will the making of plasmacytoid dendritic cells in vitro help unravel their mysteries? J Exp Med 192(12):F39–F44

    Article  PubMed  CAS  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    Article  PubMed  CAS  Google Scholar 

  • Barrat FJ, Meeker T, Gregorio J et al (2005) Nucleic acids of mammalian origin can act as endogenous ligands for toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 202(8):1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Baumann I, Kolowos W, Voll RE et al (2002) Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum 46(1):191–201

    Article  PubMed  Google Scholar 

  • Berard F, Blanco P, Davoust J et al (2000) Cross-priming of naive cd8 t cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J Exp Med 192(11):1535–1544

    Article  PubMed  CAS  Google Scholar 

  • Berkun Y, Verbovetsky I, Ben-Ami A et al (2008) Altered tolerizing dendritic cells in patients with systemic lupus erythematosus. Eur J Immunol. In print.

    Google Scholar 

  • Bickerstaff MC, Botto M, Hutchinson WL et al (1999) Serum amyloid p component controls chromatin degradation and prevents antinuclear autoimmunity. Nat Med 5(6):694–697

    Article  PubMed  CAS  Google Scholar 

  • Botto M, Dell Agnola C, Bygrave AE et al (1998) Homozygous c1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 19(1):56–59

    Article  PubMed  CAS  Google Scholar 

  • Brown S, Heinisch I, Ross E et al (2002) Apoptosis disables cd31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature 418(6894):200–203

    Article  PubMed  CAS  Google Scholar 

  • Carroll MC (2004) A protective role for innate immunity in systemic lupus erythematosus. Nat Rev Immunol 4(10):825–831

    Article  PubMed  CAS  Google Scholar 

  • Casciola-Rosen LA, Anhalt G, Rosen A (1994) Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 179(4):1317–1330

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Frank ME, Jin W et al (2001) Tgf-beta released by apoptotic t cells contributes to an immunosuppressive milieu. Immunity 14(6):715–725

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Koralov SB, Kelsoe G (2000) Complement c4 inhibits systemic autoimmunity through a mechanism independent of complement receptors cr1 and cr2. J Exp Med 192(9):1339–1352

    Article  PubMed  CAS  Google Scholar 

  • Chiarugi A (2005) Simple but not simpler Toward a unified picture of energy requirements in cell death. FASEB J 19(13):1783–1788

    Article  PubMed  CAS  Google Scholar 

  • Chung S, Gumienny TL, Hengartner MO et al (2000) A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in c. Elegans. Nat Cell Biol 2(12):931–937

    Article  PubMed  CAS  Google Scholar 

  • Cornacchia E, Golbus J, Maybaum J et al (1988) Hydralazine and procainamide inhibit t cell DNA methylation and induce autoreactivity. J Immunol 140(7):2197–2200

    PubMed  CAS  Google Scholar 

  • D Auria F, Rovere-Querini P, Giazzon M et al (2004) Accumulation of plasma nucleosomes upon treatment with anti-tumour necrosis factor-alpha antibodies. J Intern Med 255(3):409–418

    Article  CAS  Google Scholar 

  • Dancey JT, Deubelbeiss KA, Harker LA et al (1976) Neutrophil kinetics in man. J Clin Invest 58(3):705–715

    Article  PubMed  CAS  Google Scholar 

  • Darzynkiewicz Z, Juan G, Li X et al (1997) Cytometry in cell necrobiology: Analysis of apoptosis and accidental cell death (necrosis). Cytometry 27(1):1–20

    Article  PubMed  CAS  Google Scholar 

  • Decker P, Kotter I, Klein R et al (2006) Monocyte-derived dendritic cells over-express cd86 in patients with systemic lupus erythematosus. Rheumatology (Oxford) 45(9):1087–1095

    Article  CAS  Google Scholar 

  • Diamond B, Katz JB, Paul E et al (1992) The role of somatic mutation in the pathogenic anti-DNA response. Annu Rev Immunol 10731–10757

    Google Scholar 

  • Ding D, Mehta H, McCune WJ et al (2006) Aberrant phenotype and function of myeloid dendritic cells in systemic lupus erythematosus. J Immunol 177(9):5878–5889

    PubMed  CAS  Google Scholar 

  • Duperrier K, Eljaafari A, Dezutter-Dambuyant C et al (2000) Distinct subsets of dendritic cells resembling dermal dcs can be generated in vitro from monocytes, in the presence of different serum supplements. J Immunol Methods 238(1–2):119–131

    Article  PubMed  CAS  Google Scholar 

  • Elward K, Griffiths M, Mizuno M et al (2005) Cd46 plays a key role in tailoring innate immune recognition of apoptotic and necrotic cells. J Biol Chem 280(43):36342–36354

    Article  PubMed  CAS  Google Scholar 

  • Emlen W, Niebur J, Kadera R (1994) Accelerated in vitro apoptosis of lymphocytes from patients with systemic lupus erythematosus. J Immunol 152(7):3685–3692

    PubMed  CAS  Google Scholar 

  • Enari M, Sakahira H, Yokoyama H et al (1998) A caspase-activated dnase that degrades DNA during apoptosis, and its inhibitor icad. Nature 391(6662):43–50

    Article  PubMed  CAS  Google Scholar 

  • Fadok VA, Bratton DL, Konowal A et al (1998) Macrophages that have ingested apoptotic cells in vitro inhibit pro-inflammatory cytokine production through autocrine/paracrine mechanisms involving tgf-beta, pge2, and paf. J Clin Invest 101(4):890–898

    Article  PubMed  CAS  Google Scholar 

  • Fadok VA, Voelker DR, Campbell PA et al (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148(7):2207–2216

    PubMed  CAS  Google Scholar 

  • Fishelson Z, Attali G, Mevorach D (2001) Complement and apoptosis. Mol Immunol 38(2–3):207–219

    Article  PubMed  CAS  Google Scholar 

  • Gaipl US, Kuenkele S, Voll RE et al (2001) Complement binding is an early feature of necrotic and a rather late event during apoptotic cell death. Cell Death Differ 8(4):327–334

    Article  PubMed  CAS  Google Scholar 

  • Gershov D, Kim S, Brot N et al (2000) C-reactive protein binds to apoptotic cells, protects the cells from assembly of the terminal complement components, and sustains an anti-inflammatory innate immune response: Implications for systemic autoimmunity. J Exp Med 192(9):1353–1364

    Article  PubMed  CAS  Google Scholar 

  • Godson C, Mitchell S, Harvey K et al (2000) Cutting edge: Lipoxins rapidly stimulate non-phlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol 164(4):1663–1667

    PubMed  CAS  Google Scholar 

  • Hargraves MM (1949) Production in vitro of the le cell phenomenon: Use of normal bone marrow elements and blood plasma from patients with acute disseminated lupus erythematosus. Proc Staff Meet Mayo Clin 24234–24237

    Google Scholar 

  • Hargraves MM, Richmond H, Morton R (1948) Presentation of two bone marrow elements; the tart cell and le cell. Proc Staff Meet Mayo Clin 2325–2328

    Google Scholar 

  • Haserick JR, Bortz DW (1949) Normal bone marrow inclusion phenomena induced by lupus erythematosus plasma. J Invest Dermatol 1347–1349

    Google Scholar 

  • Henson PM, Bratton DL, Fadok VA (2001) Apoptotic cell removal. Curr Biol 11(19):R795–R805

    Article  PubMed  CAS  Google Scholar 

  • Herrmann M, Voll RE, Zoller OM et al (1998) Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum 41(7):1241–1250

    Article  PubMed  CAS  Google Scholar 

  • Huynh ML, Fadok VA, Henson PM (2002) Phosphatidylserine-dependent ingestion of apoptotic cells promotes tgf-beta1 secretion and the resolution of inflammation. J Clin Invest 109(1):41–50

    PubMed  CAS  Google Scholar 

  • Jaworowski A, Crowe SM (1999) Does hiv cause depletion of cd4+ t cells in vivo by the induction of apoptosis? Immunol Cell Biol 77(1):90–98

    Article  PubMed  CAS  Google Scholar 

  • Kawane K, Fukuyama H, Yoshida H et al (2003) Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation. Nat Immunol 4(2):138–144

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Gershov D, Ma X et al (2002) I-pla(2) activation during apoptosis promotes the exposure of membrane lysophosphatidylcholine leading to binding by natural immunoglobulin m antibodies and complement activation. J Exp Med 196(5):655–665

    Article  PubMed  CAS  Google Scholar 

  • Koller M, Zwolfer B, Steiner G et al (2004) Phenotypic and functional deficiencies of monocyte- derived dendritic cells in systemic lupus erythematosus (sle) patients. Int Immunol 16(11):1595–1604

    Article  PubMed  CAS  Google Scholar 

  • Kono DH, Theofilopoulos AN (2006) Genetics of sle in mice. Springer Semin Immunopathol 28(2):83–96

    Article  PubMed  Google Scholar 

  • Krispin A, Bledi Y, Atallah M et al (2006) Apoptotic cell thrombospondin-1 and heparin-binding domain lead to dendritic-cell phagocytic and tolerizing states. Blood 108(10):3580–3589

    Article  PubMed  CAS  Google Scholar 

  • Kristjansdottir H, Bjarnadottir K, Hjalmarsdottir IB et al (2000) A study of c4aq0 and mhc haplotypes in icelandic multicase families with systemic lupus erythematosus. J Rheumatol 27(11):2590–2596

    PubMed  CAS  Google Scholar 

  • Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11(7):725–730

    Article  PubMed  CAS  Google Scholar 

  • Lachmann PJ, Walport MJ (1987) Deficiency of the effector mechanisms of the immune response and autoimmunity. Ciba Found Symp 129149–129171

    Google Scholar 

  • Lauber K, Bohn E, Krober SM et al (2003) Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113(6):717–730

    Article  PubMed  CAS  Google Scholar 

  • Leadbetter EA, Rifkin IR, Hohlbaum AM et al (2002) Chromatin-igg complexes activate b cells by dual engagement of igm and toll-like receptors. Nature 416(6881):603–607

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7(10):767–777

    Article  PubMed  CAS  Google Scholar 

  • Li H, Jiang Y, Cao H et al (2003) Regulation of anti-phosphatidylserine antibodies. Immunity 18(2):185–192

    Article  PubMed  CAS  Google Scholar 

  • Maiuri MC, Zalckvar E, Kimchi A et al (2007) Self-eating and self-killing: Crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8(9):741–752

    Article  PubMed  CAS  Google Scholar 

  • Makrides SC (1998) Therapeutic inhibition of the complement system. Pharmacol Rev 50(1):59–87

    PubMed  CAS  Google Scholar 

  • Manzi S, Rairie JE, Carpenter AB et al (1996) Sensitivity and specificity of plasma and urine complement split products as indicators of lupus disease activity. Arthritis Rheum 39(7):1178–1188

    Article  PubMed  CAS  Google Scholar 

  • Marshak-Rothstein A (2006) Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 6(11):823–835

    Article  PubMed  CAS  Google Scholar 

  • Marth T, Strober W, Seder RA et al (1997) Regulation of transforming growth factor-beta production by interleukin-12. Eur J Immunol 27(5):1213–1220

    Article  PubMed  CAS  Google Scholar 

  • Means TK, Latz E, Hayashi F et al (2005) Human lupus autoantibody-DNA complexes activate dcs through cooperation of cd32 and tlr9. J Clin Invest 115(2):407–417

    PubMed  CAS  Google Scholar 

  • Mevorach D (2000) Opsonization of apoptotic cells. Implications for uptake and autoimmunity. Ann N Y Acad Sci 926226–926235

    Google Scholar 

  • Mevorach D (2004) The role of death-associated molecular patterns in the pathogenesis of systemic lupus erythematosus. Rheum Dis Clin North Am 30(3):487–504, viii

    Google Scholar 

  • Mevorach D, Mascarenhas JO, Gershov D et al (1998a) Complement-dependent clearance of apoptotic cells by human macrophages. J Exp Med 188(12):2313–2320

    Article  CAS  Google Scholar 

  • Mevorach D, Zhou JL, Song X et al (1998b) Systemic exposure to irradiated apoptotic cells induces autoantibody production. J Exp Med 188(2):387–392

    Article  CAS  Google Scholar 

  • Miwa K, Asano M, Horai R et al (1998) Caspase 1-independent il-1beta release and inflammation induced by the apoptosis inducer fas ligand. Nat Med 4(11):1287–1292

    Article  PubMed  CAS  Google Scholar 

  • Miyanishi M, Tada K, Koike M et al (2007) Identification of tim4 as a phosphatidylserine receptor. Nature 450(7168):435–439

    Article  PubMed  CAS  Google Scholar 

  • Mohan C, Adams S, Stanik V et al (1993) Nucleosome: A major immunogen for pathogenic autoantibody-inducing t cells of lupus. J Exp Med 177(5):1367–1381

    Article  PubMed  CAS  Google Scholar 

  • Nagata S (2007) Autoimmune diseases caused by defects in clearing dead cells and nuclei expelled from erythroid precursors. Immunol Rev 220237–220250

    Google Scholar 

  • Napirei M, Karsunky H, Zevnik B et al (2000) Features of systemic lupus erythematosus in dnase 1-deficient mice. Nat Genet 25(2):177–181

    Article  PubMed  CAS  Google Scholar 

  • Niculescu F, Rus H, van Biesen T et al (1997) Activation of ras and mitogen-activated protein kinase pathway by terminal complement complexes is g protein dependent. J Immunol 158(9):4405–4412

    PubMed  CAS  Google Scholar 

  • Nouri-Shirazi M, Banchereau J, Fay J et al (2000) Dendritic cell based tumour vaccines. Immunol Lett 74(1):5–10

    Article  PubMed  CAS  Google Scholar 

  • Ogden CA, de Cathelineau A, Hoffmann PR et al (2001) C1q and mannose binding lectin engagement of cell surface calreticulin and cd91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med 194(6):781–795

    Article  PubMed  CAS  Google Scholar 

  • Park DR, Thomsen AR, Frevert CW et al (2003) Fas (cd95) induces pro-inflammatory cytokine responses by human monocytes and monocyte-derived macrophages. J Immunol 170(12):6209–6216

    PubMed  CAS  Google Scholar 

  • Park SY, Jung MY, Kim HJ et al (2008) Rapid cell corpse clearance by stabilin-2, a membrane phosphatidylserine receptor. Cell Death Differ 15(1):192–201

    Article  PubMed  CAS  Google Scholar 

  • Paul E, Pozdnyakova OO, Mitchell E et al (2002) Anti-DNA autoreactivity in c4-deficient mice. Eur J Immunol 32(9):2672–2679

    Article  PubMed  CAS  Google Scholar 

  • Paul L, Skanes VM, Mayden J et al (1988) C4-mediated inhibition of immune precipitation and differences in inhibitory action of genetic variants, c4a3 and c4b1. Complement 5(3):110–119

    PubMed  CAS  Google Scholar 

  • Perniok A, Wedekind F, Herrmann M et al (1998) High levels of circulating early apoptic peripheral blood mononuclear cells in systemic lupus erythematosus. Lupus 7(2):113–118

    Article  PubMed  CAS  Google Scholar 

  • Pisetsky DS (1992) Anti-DNA antibodies in systemic lupus erythematosus. Rheum Dis Clin North Am 18(2):437–454

    PubMed  CAS  Google Scholar 

  • Price BE, Rauch J, Shia MA et al (1996) Anti-phospholipid autoantibodies bind to apoptotic, but not viable, thymocytes in a beta 2-glycoprotein i-dependent manner. J Immunol 157(5):2201–2208

    PubMed  CAS  Google Scholar 

  • Quddus J, Johnson KJ, Gavalchin J et al (1993) Treating activated cd4+ t cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J Clin Invest 92(1):38–53

    Article  PubMed  CAS  Google Scholar 

  • Radic MZ, Weigert M (1994) Genetic and structural evidence for antigen selection of anti-DNA antibodies. Annu Rev Immunol 12487–12520

    Google Scholar 

  • Reefman E, Horst G, Nijk MT et al (2007) Opsonization of late apoptotic cells by systemic lupus erythematosus autoantibodies inhibits their uptake via an fcgamma receptor-dependent mechanism. Arthritis Rheum 56(10):3399–3411

    Article  PubMed  CAS  Google Scholar 

  • Reis e Sousa C (2001) Dendritic cells as sensors of infection. Immunity 14(5):495–498

    Article  PubMed  CAS  Google Scholar 

  • Ren Y, Tang J, Mok MY et al (2003) Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthritis Rheum 48(10):2888–2897

    Article  PubMed  Google Scholar 

  • Restifo NP (2000) Not so fas: Re-evaluating the mechanisms of immune privilege and tumour escape. Nat Med 6(5):493–495

    Article  PubMed  CAS  Google Scholar 

  • Rovere P, Sabbadini MG, Vallinoto C et al (1999) Dendritic cell presentation of antigens from apoptotic cells in a pro-inflammatory context: Role of opsonizing anti-beta2-glycoprotein i antibodies. Arthritis Rheum 42(7):1412–1420

    Article  PubMed  CAS  Google Scholar 

  • Rubartelli A, Poggi A, Zocchi MR (1997) The selective engulfment of apoptotic bodies by dendritic cells is mediated by the alpha(v)beta3 integrin and requires intracellular and extracellular calcium. Eur J Immunol 27(8):1893–1900

    Article  PubMed  CAS  Google Scholar 

  • Rumore PM, Steinman CR (1990) Endogenous circulating DNA in systemic lupus erythematosus. Occurrence as multimeric complexes bound to histone. J Clin Invest 86(1):69–74

    Article  PubMed  CAS  Google Scholar 

  • Russell AI, Cunninghame Graham DS, Shepherd C et al (2004) Polymorphism at the c-reactive protein locus influences gene expression and predisposes to systemic lupus erythematosus. Hum Mol Genet 13(1):137–147

    Article  PubMed  CAS  Google Scholar 

  • Sakahira H, Enari M, Nagata S (1998) Cleavage of cad inhibitor in cad activation and DNA degradation during apoptosis. Nature 391(6662):96–99

    Article  PubMed  CAS  Google Scholar 

  • Savill J, Fadok V (2000) Corpse clearance defines the meaning of cell death. Nature 407(6805):784–788

    Article  PubMed  CAS  Google Scholar 

  • Scannell M, Flanagan MB, deStefani A et al (2007) Annexin-1 and peptide derivatives are released by apoptotic cells and stimulate phagocytosis of apoptotic neutrophils by macrophages. J Immunol 178(7):4595–4605

    PubMed  CAS  Google Scholar 

  • Scheinecker C, Zwolfer B, Koller M et al (2001) Alterations of dendritic cells in systemic lupus erythematosus: Phenotypic and functional deficiencies. Arthritis Rheum 44(4):856–865

    Article  PubMed  CAS  Google Scholar 

  • Serhan CN, Savill J (2005) Resolution of inflammation: The beginning programs the end. Nat Immunol 6(12):1191–1197

    Article  PubMed  CAS  Google Scholar 

  • Shoshan Y, Shapira I, Toubi E et al (2001) Accelerated fas-mediated apoptosis of monocytes and maturing macrophages from patients with systemic lupus erythematosus: Relevance to in vitro impairment of interaction with ic3b-opsonized apoptotic cells. J Immunol 167(10):5963–5969

    PubMed  CAS  Google Scholar 

  • Speirs C, Fielder AH, Chapel H et al (1989) Complement system protein c4 and susceptibility to hydralazine-induced systemic lupus erythematosus. Lancet 1(8644):922–924

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Annu Rev Immunol 21685–21711

    Google Scholar 

  • Steinsson K, Jonsdottir S, Arason GJ et al (1998) A study of the association of hla dr, dq, and complement c4 alleles with systemic lupus erythematosus in iceland. Ann Rheum Dis 57(8):503–505

    Article  PubMed  CAS  Google Scholar 

  • Sutterwala FS, Noel GJ, Clynes R et al (1997) Selective suppression of interleukin-12 induction after macrophage receptor ligation. J Exp Med 185(11):1977–1985

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Tack BF, Nussenzweig V (1977) Requirements for the solubilization of immune aggregates by complement: Assembly of a factor b-dependent c3-convertase on the immune complexes. J Exp Med 145(1):86–100

    Article  PubMed  CAS  Google Scholar 

  • Tassiulas I, Park-Min KH, Hu Y et al (2007) Apoptotic cells inhibit lps-induced cytokine and chemokine production and ifn responses in macrophages. Hum Immunol 68(3):156–164

    Article  PubMed  CAS  Google Scholar 

  • Taylor PR, Carugati A, Fadok VA et al (2000) A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J Exp Med 192(3):359–366

    Article  PubMed  CAS  Google Scholar 

  • Verbovetski I, Bychkov H, Trahtemberg U et al (2002) Opsonization of apoptotic cells by autologous ic3b facilitates clearance by immature dendritic cells, down-regulates dr and cd86, and up-regulates cc chemokine receptor 7. J Exp Med 196(12):1553–1561

    Article  PubMed  CAS  Google Scholar 

  • Verbovetski I, Weintraub M, Hochberg M et al In vivo clearance of apoptotic keratinocytes induces a distinct, tolerant milieu and migration of tolerizing langerhans cells. In preparation

    Google Scholar 

  • Verhoven B, Schlegel RA, Williamson P (1995) Mechanisms of phosphatidylserine exposure, a phagocyte recognition signal, on apoptotic t lymphocytes. J Exp Med 182(5):1597–1601

    Article  PubMed  CAS  Google Scholar 

  • Viglianti GA, Lau CM, Hanley TM et al (2003) Activation of autoreactive b cells by cpg dsdna. Immunity 19(6):837–847

    Article  PubMed  CAS  Google Scholar 

  • Voll RE, Herrmann M, Roth EA et al (1997) Immunosuppressive effects of apoptotic cells. Nature 390(6658):350–351

    Article  PubMed  CAS  Google Scholar 

  • Vollmer J, Tluk S, Schmitz C et al (2005) Immune stimulation mediated by autoantigen binding sites within small nuclear rnas involves toll-like receptors 7 and 8. J Exp Med 202(11):1575–1585

    Article  PubMed  CAS  Google Scholar 

  • Wright SD, Silverstein SC (1983) Receptors for c3b and c3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J Exp Med 158(6):2016–2023

    Article  PubMed  CAS  Google Scholar 

  • Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284(5756):555–556

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Johnston RB Jr. (1984) Dissociation of phagocytosis from stimulation of the oxidative metabolic burst in macrophages. J Exp Med 159(2):405–416

    Article  PubMed  CAS  Google Scholar 

  • Yrlid U, Wick MJ (2000) Salmonella-induced apoptosis of infected macrophages results in presentation of a bacteria-encoded antigen after uptake by bystander dendritic cells. J Exp Med 191(4):613–624

    Article  PubMed  CAS  Google Scholar 

  • Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20(1):1–15

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mevorach, D. (2009). Clearance of Dying Cells and Systemic Lupus Erythematosus. In: Krysko, D.V., Vandenabeele, P. (eds) Phagocytosis of Dying Cells: From Molecular Mechanisms to Human Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9293-0_10

Download citation

Publish with us

Policies and ethics