Advertisement

Applications of Luminescence to Fingerprints and Trace Explosives Detection

Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Fingerprints and trace explosives detection requires great sensitivity, which is provided by luminescence and appropriate physical and chemical treatments. Ninhydrin, 1,2-indanedione and other chemicals react with the amino acids present in the fingerprint residue. The chemically treated samples, on which the prints are to be detected, are excited with the blue lines 476.5 and 488 nm of an Argon laser, and the sample's fluorescence is observed under orange filters. The detection of common explosives including trinitrotoluene (TNT) may also be carried out using luminescence techniques. Trace explosive and fingerprint detection require sensitivity due to the minute amount of matter left and available on the samples to be detected. Detection sensitivity can be gained by taking advantage of luminescence techniques. To increase the sensitivity of such detection luminescent chemicals are used, and to distinguish among compounds in a mixture of explosives, time-resolved imaging techniques may suppress any unwanted and background luminescence. Explosives are tagged with europium complexes showing long lived luminescence (0.4 ms) and appropriate for time-resolved imaging. The europium luminescence excitation utilizes a laser operating at 355 nm. Comparison between photoluminescence fingerprints and trace explosives detection will be presented and discussed: common difficulties will be exposed.

Keywords

Laser luminescence time-resolved explosives detection fingerprints 2-indanedione europium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alaoui, I. M., and Menzel E. R. (1993) Spectroscopy of Rare Earth Ruhemann's Purple Com plexes. J. Forensic Sci., 38(3), 506–520.Google Scholar
  2. 2.
    Alaoui, I. M. (1995) Non-Participation of the Ligand First Triplet State in Intra-molecular Energy Transfer In Europium and Terbium Ruhemann's Purple Complexes. J. Phys. Chem., 99, 13280–13282.CrossRefGoogle Scholar
  3. 3.
    Alaoui, I. M., and Menzel, E. R. (1996) Constituent Effects on Luminescence Enhancement in Europium and Terbium Ruhemann's Purple Complexes. J. Forensic Sci. Int., 77, 3–11.CrossRefGoogle Scholar
  4. 4.
    Alaoui, I. M., Menzel, E. R., Farag, M., Cheng, K. H., and Murdock, R. H. (2005) Mass spectra and time-resolved fluorescence spectroscopy of the reaction product of glycine with 1,2-indanedione in methanol. Forensic Sci. Int., 152, 215–219.CrossRefGoogle Scholar
  5. 5.
    Alaoui, I. M. (2007) Time-resolved luminescence Imaging and Applications, ASI-Imaging for Detection and Identification, 243–248.Google Scholar
  6. 6.
    Herold, D. W. and Menzel, E. R. (1982) Laser detection of latent fingerprints: ninhydrin fol lowed by zinc chloride. J. Forensic Sci., 27, 513–518.Google Scholar
  7. 7.
    Hummel, J. (2004) Photoluminescence spectroscopy: New technique for detecting explosives. www.buzzle.com/editorials/10-11-2004-60363.asp.
  8. 8.
    Hummel, R. E., Fuller, A. M., Schllhorn, C., and Holloway, P. H. (2006) Detection of explosive materials by differential reflection spectroscopy. Applied Phys. Lett., 88, 23.CrossRefGoogle Scholar
  9. 9.
    Joulli, M. M. and Petrovskaia, O. (1998) A better way to develop fingerprints. ChemTech, 28(8), 41–44.Google Scholar
  10. 10.
    Menzel, E. R. (1980) Fingerprint Detection with Lasers. Marcel Decker, New York.Google Scholar
  11. 11.
    Menzel, E. R., and Menzel, L. W. (2004) Ordinary and time-resolved photoluminescence field detection of traces of explosives and fingerprints. J. Forensic Ident. 54, 560–571.Google Scholar
  12. 12.
    Menzel, E. R., Bouldin, K. K., and Murdock, R. H. (2004) Trace explosives detection by photoluminescence. ScientificWorldJournal 4, 55–66.Google Scholar
  13. 13.
    Menzel, E. R., Menzel, L. W., and Schwierking, J. R. (2004) A photoluminescence-based field method for detection of traces of explosives. ScientificWorldJournal 4, 725–735.CrossRefGoogle Scholar
  14. 14.
    Mitchell, K. E., and Menzel, E. R. (1989) Time resolved luminescence imaging: Application to latent fingerprint detection, Fluorescence Detection III, SPIE Proceedings, E. R. Menzel, Ed., 1054, 191–195.Google Scholar
  15. 15.
    Pounds, C. A., Ggrigg, R., and Mongkolaussavaranta, T. (1990) The use of 1,8-diazafluoren-9-one (DFO) for the fluorescent detection of latent fingerprints on paper. J. Forensic Sci., 35(1), 169–175.Google Scholar
  16. 16.
    Schllhorn, C., Fuller, A. M., Gratier, J., and Hummel, R. E. (2007) Developments on standoff detection of explosive materials by differential reflectometry. Appl. Opt., 46, 6232–6236.CrossRefGoogle Scholar
  17. 17.
    Toal, S. J., and Trogler, W. C. (2006) Polymer sensors for nitroaromatic explosives detection. J. Mater. Chem., 16, 2871–2883.CrossRefGoogle Scholar
  18. 18.
    Toal, S. J., Sanchez, J. C., Dugan, R. E., and Trogler, W. C. (2007) Visual Detection of Trace Nitroaromatic Explosive Residue Using Photoluminescent Metallole-Containing Polymers. J. Forensic Sci., 52(1), 79–83.CrossRefGoogle Scholar
  19. 19.
    Weissman S. I. (1942) Intramolecular energy transfer, the fluorescence of complexes of europium. J. Chem. Phys., 10, 214–217.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of PhysicsFaculty of Sciences Semlalia Cadi Ayyad UniversityMorocco

Personalised recommendations