Skip to main content

Electromagnetic Methods for UXO Discrimination

  • Conference paper
Unexploded Ordnance Detection and Mitigation

Abstract

The subsurface remote-sensing technology currently used in the United States for UXO decontamination is relatively crude, consisting of DC (static) magnetometry. Ultrawideband electromagnetic induction (EMI) is emerging as a technology with reasonable discrimination potential. EMI devices operate in the magneto-quasistatic (MQS) band, usually between tens of Hz and perhaps a couple hundred kHz, and engage a substantially different phenomenology than that of wave electromagnetics. Over the relevant space scales, soil, fresh water, and rock are effectively lossless in the MQS regime, which encourages EMI application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrowes, B.E., O'Neill, K., Grzegorczyk, T.M., Chen, X., Kong, J.A.: Broadband analytical magneto-quasistatic electromagnetic induction solution for a conducting and permeable spheroid. IEEE Trans. Geosci. Remote Sensing 42, 2479–2489 (2004)

    Article  Google Scholar 

  2. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: D. Haussler (ed.) Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, pp. 144–152. ACM Press, New York (1992)

    Chapter  Google Scholar 

  3. Burges, C.J.C.: A tutorial on Support Vector Machines for pattern recognition. Data Min. Knowl. Disc. 2, 121–167 (1998)

    Article  Google Scholar 

  4. Butler, D.K.: Implications of magnetic backgrounds for unexploded ordnance detection. J. Appl. Geophys. 54, 111–125 (2003)

    Article  Google Scholar 

  5. Cattach, M.K., Stanley, J.M., Lee, S.J., Boyd, G.W.: Sub-Audio-Magnetics (SAM): a high-resolution technique for simultaneously mapping electrical and magnetic properties. Explor. Geophys. 24, 387–400 (1993). See also http://www.g-tek.biz/library.html

    Article  Google Scholar 

  6. Chen, C.C., Higgins, M.B., O'Neill, K., Detsch, R.: Ultrawide-bandwidth fully-polarimetric ground penetrating radar classification of subsurface unexploded ordnance. IEEE Trans. Geosci. Remote Sensing 39, 1221–1230 (2001)

    Article  Google Scholar 

  7. Chen, X., O'Neill, K., Barrowes, B.E., Grzegorczyk, T.M., Kong, J.A.: Application of a spheroidal mode approach with differential evolution in inversion of magnetoquasistatic data for UXO discrimination. Inv. Prob. 20, 27–40 (2004)

    Article  Google Scholar 

  8. Chen, X., O'Neill, K., Grzegorczyk, T.M., Kong, J.A.: Spheroidal mode approach for the characterization of metallic objects using electromagnetic induction. IEEE Trans. Geosci. Remote Sensing 45, 697–706 (2007)

    Article  Google Scholar 

  9. Cheng, D.K.: Field and Wave Electromagnetics. Addison-Wesley, Reading, MA (1989)

    Google Scholar 

  10. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  11. Fernández, J.P., Barrowes, B., O'Neill, K., Paulsen, K., Shamatava, I., Shubitidze, F., Sun, K.: Evaluation of SVM classification of metallic objects based on a magnetic-dipole representation. In: J.T. Broach, R.S. Harmon, J.H. Holloway Jr. (eds.) Detection and Remediation Technologies for Mines and Minelike Targets XI, Proceedings of SPIE, vol. 6217, pp. 6217– 03. Bellingham, WA (2006)

    Google Scholar 

  12. Fernández, J.P., Barrowes, B., O'Neill, K., Shamatava, I., Shubitidze, F., Sun, K.: A data-derived time-domain SEA for UXO identification using the MPV sensor. In: R.S. Harmon, J.T. Broach, J.H. Holloway Jr. (eds.) Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIII, Proceedings of SPIE, vol. 6953, pp. 6953–1H. Bellingham, WA (2008)

    Google Scholar 

  13. Fernández, J.P., Sun, K., Barrowes, B., O'Neill, K., Shamatava, I., Shubitidze, F., Paulsen, K.: Inferring the location of buried UXO using a Support Vector Machine. In: R.S. Harmon, J.T. Broach, J.H. Holloway Jr. (eds.) Detection and Remediation Technologies for Mines and Minelike Targets XII, Proceedings of SPIE, vol. 6553, pp. 6553–0B. Bellingham, WA (2007)

    Google Scholar 

  14. O'Neill, K.: Ultra-wideband, fully polarimetric ground penetrating radar for UXO discrimination. ESTCP Final Technical Report, Project 199902. www.estcp.org (2005)

  15. O'Neill, K.: Processing for clutter evasion in UXO discrimination. SERDP Project MM-1590 Final Technical Report. www.serdp.org (2008)

  16. Pasion, L.R., Oldenburg, D.W.: A discrimination algorithm for UXO using time domain electromagnetics. J. Environ. Eng. Geophys. 6, 91–102 (2001)

    Article  Google Scholar 

  17. Rüping, S.: mySVM-Manual. University of Dortmund, Lehrstuhl Informatik 8 (http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/) (2000)

  18. Shubitidze, F., O'Neill, K., Barrowes, B., Shamatava, I., Sun, K., Fernández, J.P., Paulsen, K.: Application of the normalized surface magnetic charge model to UXO discrimination in cases with overlapping signals. J. Appl. Geophys. 61, 292–303 (2007)

    Article  Google Scholar 

  19. Shubitidze, F., O'Neill, K., Shamatava, I., Sun, K., Paulsen, K.D.: Fast and accurate calculation of physically complete EMI response by a heterogeneous metallic object. IEEE Trans. Geosci. Remote Sensing 43, 1736–1750 (2005)

    Article  Google Scholar 

  20. Stratton, J.A.: Electromagnetic Theory. McGraw-Hill, New York (1941)

    Google Scholar 

  21. Sun, K., O'Neill, K., Shubitidze, F., Shamatava, I., Paulsen, K.: Fast data-derived fundamental spheroidal excitation models with application to UXO discrimination. IEEE Trans. Geosci. Remote Sensing 43, 2573–2583 (2005)

    Article  Google Scholar 

  22. Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10, 988– 999 (1999)

    Article  Google Scholar 

  23. Wait, J.R.: A conducting sphere in a time varying magnetic field. Geophysics 16, 666–672 (1951)

    Article  Google Scholar 

  24. Zhang, B.: Classification, identification, and modeling of unexploded ordnance in realistic environments. Ph.D. thesis, Massachusetts Institute of Technology (2008)

    Google Scholar 

  25. Zhang, B., O'Neill, K., Kong, J.A., Grzegorczyk, T.M.: Support vector machine and neural network classification of metallic objects using coefficients of the spheroidal MQS response modes. IEEE Trans. Geosci. Remote Sensing 46, 159–171 (2008)

    Article  Google Scholar 

  26. Zhang, B., O'Neill, K., Kong, J.A.: Absolute calibration of EMI measurements and application to soil magnetic susceptibility inference. J. Environ. Eng. Geophys. 13, 223–235 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin O'Neill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

O'Neill, K., Fernández, J.P. (2009). Electromagnetic Methods for UXO Discrimination. In: Byrnes, J. (eds) Unexploded Ordnance Detection and Mitigation. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9253-4_10

Download citation

Publish with us

Policies and ethics