Skip to main content

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 158))

  • 4404 Accesses

Because the analytical solutions to coupled and generalized thermoelasticity problems are mathematically complicated, the numerical methods, such as the finite and the boundary element methods, have become powerful means of analysis. This chapter presents a new treatment of the finite and the boundary element methods for this class of problems. The finite element method based on Galerkin technique is employed in order to model the general form of the coupled equations, and the application is then expanded to the two- and one-dimensional cases. The generalized thermoelasticity problems for a functionally graded layer, a thick sphere, a disk, and a beam are discussed using Galerkin finite element technique. To show the strong rate of convergence of Galerkin-based finite element, a problem for a radially symmetric loaded disk with three types of shape functions, linear, quadratic, and cubic, is solved. It is shown that the linear solution rapidly converges to that of the cubic solution. The chapter concludes with the boundary element formulation for the generalized thermoe-lasticity. A unique principal solution satisfying both the thermoelasticity and the coupled energy equations is employed to obtain the boundary element formulation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Eslami, M.R., A Note on Finite Element of Coupled Thermoelasticity, Proc. ICEAM, Sharif Univ., Tehran, June 9–12, 1992

    Google Scholar 

  2. Eslami, M.R., Shakeri, M., and Sedaghati, R., Coupled Thermoelasticity of Axially Symmetric Cylindrical Shells, J. Therm. Stresses, Vol. 17, No. 1, pp. 115–135, 1994

    Article  Google Scholar 

  3. Eslami, M.R., Shakeri, M., and Ohadi, A.R., Coupled Thermoelasticity of Shells, Proc. Therm. Stresses' 95, Shizuoka Univ., Hamamatsu, Japan, June 1995

    Google Scholar 

  4. Eslami, M.R., Shakeri, M., Ohadi, A.R., and Shiari, B., Coupled Ther-moelasticity of Shells of Revolution: The Effect of Normal Stress, AIAA J., Vol. 37, No. 4, pp. 496–504, 1999

    Article  Google Scholar 

  5. Eslami, M.R., A First Course in Finite Element Analysis, Amirkabir University Press, Tehran, 2003

    Google Scholar 

  6. Eslami, M.R. and Salehzadeh, A., Application of Galerkin Method to Coupled Thermoelasticity Problems, Proc. 5th. Int. Modal Anal. Conf., New York, April 6–9, 1987

    Google Scholar 

  7. Eslami, M.R. and Vahedi, H., Coupled Thermoelasticity Beam Problems, AIAA J., Vol. 27, No. 5, pp. 662–665, 1989

    Article  Google Scholar 

  8. Eslami, M.R. and Vahedi, H., A General Finite Element Stress Formulation of Dynamic Thermoelastic Problems Using Galerkin Method, J. Therm. Stresses, Vol. 14, No. 2, pp. 143–159, 1991

    Article  Google Scholar 

  9. Maxwell, J.C., On the Dynamical Theory of Gases, Phil. Trans. Royal Soc. New York, Vol. 157, pp. 49–88, 1867

    Google Scholar 

  10. Landau, E.M., The Theory of Superfluidity of Helium II, J. Phys., U.S.S.R., Vol. 5, pp. 71–90, 1941

    Google Scholar 

  11. Peshkov, V., Second Sound in Helium II, J. Phys., U.S.S.R., Vol. 8, pp. 131–138, 1944

    Google Scholar 

  12. Cattaneo, M.C., Sulla Conduzione de Calor, Atti Sem. Mat. Fis., Del. Univ. Modena, Vol. 3, p. 3, 1948

    Google Scholar 

  13. Vernotte, P., Les Paradoxes de la Theorie Continue de l'equation de la Chaleur, C.R. Acad. Sci., Vol. 246, pp. 3154–3155, 1958

    MathSciNet  Google Scholar 

  14. Chester, M., Second Sound in Solids, Phys. Rev., Vol. 131, pp. 2013– 2015, 1963

    Article  Google Scholar 

  15. Ignaczak, J., Linear Dynamic Thermoelasticity, A Survey, Shock Vib. Dig., Vol. 13, pp. 3–8, 1981

    Article  Google Scholar 

  16. Lord, H.W. and Shulman, Y., A Generalized Dynamical Theory of Ther-moelasticity, J. Mech. Phys. Solids, Vol. 15, pp. 299–309, 1967

    Article  MATH  Google Scholar 

  17. Green, A.E. and Lindsay, K.A., Thermoelasticity, J. Elasticity, Vol. 2, No. 1, pp. 1–7, March 1972

    Article  MATH  Google Scholar 

  18. Chandrasekharaiah, D.S., Thermoelasticity with Second Sound: A Review, Appl. Mech. Rev., Vol. 39, No. 3, pp. 355–376, 1986

    MATH  MathSciNet  Google Scholar 

  19. Joseph, D.D. and Preziosi, L., Heat Waves, Rev. Mod. Phys., Vol. 61, pp. 41–73, 1989

    Article  MATH  MathSciNet  Google Scholar 

  20. Joseph, D.D. and Preziosi, L., Addendum to the Paper Heat Waves, Rev. Mod. Phys., Vol. 62, pp. 375–391, 1990

    Article  MathSciNet  Google Scholar 

  21. Lee, W.Y., Stinton, D.P., Berndt, C.C., Erdogan, F., Lee, Y., and Mutasim, Z., Concept of Functionally Graded Materials for Advanced Thermal Barrier Coating Applications, J. Am. Ceram. Soc., Vol. 79, No. 12, 1996

    Google Scholar 

  22. Bagri, A., Taheri, H., Eslami, M.R., and Fariborz, S., Generalized Coupled Thermoelasticity of a Layer, J. Therm. Stresses, Vol. 29, No. 4. pp. 359–370, 2006

    Article  Google Scholar 

  23. Green, A.E. and Naghdi, P.M., Thermoelasticity Without Energy Dissipation, J. Elasticity, Vol. 31, pp. 189–208, 1993

    Article  MATH  MathSciNet  Google Scholar 

  24. Green, A.E. and Naghdi, P.M., A Re-Examination of the Basic Postulates of Thermomechanics, Proc. Roy. Soc. London Ser. A., Vol. 432, pp. 171–194, 1991

    Article  MATH  MathSciNet  Google Scholar 

  25. Takeuti, Y. and Furukawa, T., Some Consideration on Thermal Shock Problems in Plate, ASME J. Appl. Mech., Vol. 48, pp. 113–118, 1981.493

    MATH  Google Scholar 

  26. Amin, A.M. and Sierakowski, R.L., Effect of Thermomechanical Coupling of the Response of Elastic Solids, AIAA J., Vol. 28, pp. 1319–1322, 1990

    Article  Google Scholar 

  27. Tamma, K. and Namburu, R., Computational Approaches with Application to Non-Classical and Classical Thermomechanical Problems, Appl. Mech. Rev., Vol. 50, pp. 514–551, 1997

    Google Scholar 

  28. Chen, H. and Lin, H., Study of Transient Coupled Thermoelastic Problems with Relaxation Times, ASME J. Appl. Mech., Vol. 62, pp. 208–215, 1995

    Article  MATH  Google Scholar 

  29. Hosseini Tehrani, P. and Eslami, M.R., Boundary Element Analysis of Coupled Thermoelasticity with Relaxation Times in Finite Domain, AIAA J., Vol. 38, No. 3, pp. 534–541, 2000

    Article  Google Scholar 

  30. Hosseini Tehrani, P. and Eslami, M.R., Boundary Element Analysis of Finite Domains Under Thermal and Mechanical Shock with the Lord— Shulman Theory, J. Strain Anal., Vol. 38, No. 1, pp. 53–64, 2003

    Article  Google Scholar 

  31. Zhang, Q.J., Zhang, L.M., and Yuan, R.Z., A Coupled Thermoelasticity Model of Functionally Gradient Materials Under Sudden High Surface Heating, Ceramic Trans., Functionally Gradient Materials, Vol. 34, pp. 99–106, 1993

    Google Scholar 

  32. Praveen, G.N. and Reddy, J.N., Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramic-Metal Plates, Int. J. Solids Struct., Vol. 35, pp. 4457–4476, 1998

    Article  MATH  Google Scholar 

  33. Bagri, A., Eslami, M.R., and Samsam-Shariat, B., Coupled Thermoe-lasticity of Functionally Graded Layer, Proc. 5th Int. Cong. Therm. Stresses, Vienna University of Technology, pp. 721–724, May 26–29, 2005

    Google Scholar 

  34. Bagri, A., Eslami, M.R, and Samsam-Shariat, B., Generalized Coupled Thermoelasticity of Functionally Graded Layers, ASME Conference, ESDA2006, Torino, Italy, July 4–7, 2006

    Google Scholar 

  35. Honig, G. and Hirdes, U., A Method for the Numerical Inversion of Laplace Transforms, J. Comp. Appl. Math., Vol. 10, pp. 113–132, 1984

    Article  MATH  MathSciNet  Google Scholar 

  36. Li, Y.Y., Ghoneim, H., and Chen, Y., A Numerical Method in Solving a Coupled Thermoelasticity Equation and Some Results, J. Therm. Stresses, Vol. 6, pp. 253–280, 1983

    Article  Google Scholar 

  37. Ghoneim, H., Thermoviscoplasticity by Finite Element: Dynamic Loading of a Thick Walled Cylinders, J. Therm. Stresses, Vol. 9, pp. 345–358, 1986

    Article  Google Scholar 

  38. Eslami, M.R. and Vahedi, H., A Galerkin Finite Element Formulation of Dynamic Thermoelasticity for Spherical Problems, Proc. 1989 ASME-PVP Conf., Hawaii, July 23–27, 1989

    Google Scholar 

  39. Eslami, M.R. and Vahedi, H., Galerkin Finite Element Displacement Formulation of Coupled Thermoelasticity Spherical Problems, Trans. ASME, J. Press. Ves. Tech., Vol. 14, No. 3, pp. 380–384, 1992

    Article  Google Scholar 

  40. Obata, Y. and Noda, N., Steady Thermal Stresses in a Hollow Circular Cylinder and a Hollow Sphere of Functionally Gradient Material, J. Therm. Stresses, Vol. 17, pp. 471–488, 1994

    Article  Google Scholar 

  41. Lutz, M.P. and Zimmerman, R.W., Thermal Stresses and Effective Thermal Expansion Coefficient of a Functionally Graded Sphere, J. Therm. Stresses, Vol. 19, pp. 39–54, 1996

    Article  MathSciNet  Google Scholar 

  42. Eslami, M.R., Babai, M.H., and Poultangari, R., Thermal and Mechanical Stresses in a Functionally Graded Thick Sphere, Int. J. Pres. Ves. Pip., Vol. 82, pp. 522–527, 2005

    Article  Google Scholar 

  43. Bagri, A. Eslami, M.R., Analysis of Thermoelastic Waves in Functionally Graded Hollow Spheres Based on the Green—Lindsay Theory, J. Therm. Stresses, Vol. 30, No. 12, pp. 1175–1193, 2007

    Article  Google Scholar 

  44. Bagri, A. and Eslami, M.R., Generalized Coupled Thermoelasticity of Disks Based on the Lord—Shulman Model, J. Therm. Stresses, Vol. 27, No. 8, pp. 691–704, 2004

    Article  Google Scholar 

  45. Reddy, J.N. and Chin, C.D., Thermomechanical Analysis of Functionally Graded Cylinders and Plates, J. Therm. Stresses, Vol. 21, pp. 593–626, 1998

    Article  Google Scholar 

  46. Bahtui, A. and Eslami, M.R., Coupled Thermoelasticity of Functionally Graded Cylindrical Shells, Mech. Res. Commun., Vol. 34, Issue 1, pp. 1– 18, 2007

    Article  Google Scholar 

  47. Bakhshi, M., Bagri, A., and Eslami, M.R., Coupled Thermoelasticity of Functionally Graded Disk, Mech. Adv. Mater. Struct., Vol. 13, No. 3, pp. 219–225, 2006

    Article  Google Scholar 

  48. Eslami, M.R. and Bagri, A., Higher Order Elements for the Analysis of the Generalized Thermoelasticity of Disk Based on the Lord Shulman Model, Proc. Int. Conf. on Computational Methods in Science and Engineering, Athena, Greece, Nov. 19–23, 2004

    Google Scholar 

  49. Jones, P.J., Thermoelastic Vibration of Beams, J. Acoust. Soc. Am., Vol. 39, pp. 542–548, 1966

    Article  MATH  Google Scholar 

  50. Seibert, A.G. and Rice, J.S., Coupled Thermally Induced Vibrations of Beams, AIAA J., Vol. 11, pp. 1033–1035, 1973

    Article  Google Scholar 

  51. Massalas, C.V. and Kalpakidis, V.K., Coupled Thermoelastic Vibration of a Simply Supported Beam, J. Sound Vib., Vol. 88, pp. 425–429, 1983

    Article  MATH  Google Scholar 

  52. Massalas, C.V. and Kalpakidis, V.K., Coupled Thermoelastic Vibration of a Timoshenko Beam, Lett. Appl. Eng. Sci., Vol. 22, pp. 459–465, 1984

    MATH  Google Scholar 

  53. Maruthi Rao, D. and Sinha, P.K., Finite Element Coupled Thermostruc-tural Analysis of Composite Beams, Comput. Struct., Vol. 63, pp. 539– 549, 1997

    Article  MATH  Google Scholar 

  54. Manoach, E. and Ribeiro, P., Coupled Thermoelastic Large Amplitude Vibrations of Timoshenko Beams, J. Mech. Sci., Vol. 46, pp. 1589–1606, 2004

    Article  MATH  Google Scholar 

  55. Sankar, B.V., An Elasticity for Functionally Graded Beams, J. Compos. Sci. Technol., Vol. 61, pp. 686–696, 2001

    Google Scholar 

  56. Bhavani, V., Sankar, B.V., and Tzeng, J.T., Thermal Stresses in Functionally Graded Beams, AIAA J., Vol. 40, pp. 1228–1232, 2002

    Article  Google Scholar 

  57. Babai, M.H., Abbasi, M., and Eslami, M.R., Coupled Thermoelasticity of Functionally Graded Beams, J. Therm. Stresses, Vol. 31, pp. 680–697, 2008

    Article  Google Scholar 

  58. McQuillen, E.J. and Brull, M.A., Dynamic Thermoelastic Response of Cylindrical Shell, J. Appl. Mech., Vol. 37, pp. 661–670, 1970

    MATH  Google Scholar 

  59. Nayfeh, A.H., Propagation of Thermoelastic Distribution in Non-Fourier Solids, AIAA J., Vol. 15, pp. 957–960, 1977

    Article  MATH  Google Scholar 

  60. Nayfeh, A.H. and Nemat-Nasser, S., Thermoelastic Waves in Solids with Thermal Relaxation, Acta Mech., Vol. 12, pp. 53–69, 1971

    Article  MATH  Google Scholar 

  61. Puri, P., Plane Waves in Generalized Thermoelasticity, Int. J. Eng. Sci., Vol. 11, pp. 735–744, 1973

    Article  MATH  Google Scholar 

  62. Agarwal, V.K., On Plane Waves in Generalized Thermoelasticity, Acta Mech., Vol. 31, pp. 185–198, 1979

    Article  MATH  Google Scholar 

  63. Tamma, K.K. and Zhou, X., Macroscale Thermal Transport and Thermo-Mechanical Interactions: Some Noteworthy Perspectives, J. Therm. Stresses, Vol. 21, pp. 405–450, 1998

    Article  Google Scholar 

  64. Zhou, X., Tamma, K.K., and Anderson, V.D.R., On a New C- and F-Processes Heat Conduction Constitutive Mode and Associated Generalized Theory of Thermoelasticity, J. Therm. Stresses, Vol. 24, pp. 531–564, 2001

    Article  Google Scholar 

  65. Hosseini Tehrani, P. and Eslami, M.R., Two-Dimensional Time Harmonic Dynamic Coupled Thermoelasticity Analysis by BEM Formulation, Eng. Anal. Bound. Elem., Vol. 22, pp. 245–250, 1998

    Article  MATH  Google Scholar 

  66. Prevost, J.H. and Tao, D., Finite Element Analysis of Dynamic Coupled Thermoelasticity Problems with Relaxation Times, ASME J. Appl. Mech., Vol. 50, pp. 817–822, 1983

    MATH  Google Scholar 

  67. Tamma, K.K. and Railkar, S.B., Evaluation of Thermally Induced Non-Fourier Stress Wave Disturbances via Specially Tailored Hybrid Trans-finite Formulations, Comput. and Struct., Vol. 34, pp. 5., 1990

    Article  MATH  Google Scholar 

  68. Tamma, K.K., Numerical Simulations for Hyperbolic Heat Conduction/Dynamic Problems Influenced by Non-Fourier/Fourier Effects, Symp. of Heat Waves, University of Minnesota, Minneapolis, 1989

    Google Scholar 

  69. Tamma, K.K., An Overview of Non-Classical/Classical Thermal Structural Models and Computational Methods for Analysis of Engineering Structures, Chap. 4 in Thermal Stresses IV, R.B. Hetnarski, ed., Elsevier Science, Amsterdam, 1996

    Google Scholar 

  70. Chen, J. and Dargush, G.F., BEM for Dynamic Poroelastic and Ther-moelastic Analysis, Int. J. Solids Struct., Vol. 32, No. 15, pp. 2257–2278, 1995

    Article  MATH  Google Scholar 

  71. Eslami, M.R. and Hosseini Tehrani, P., Propagation of Thermoelastic Waves in a Two-Dimensional Finite Domain by BEM, Proc. of the Third Int. Congress on Thermal Stresses, June 13–17, Cracow, Poland, June 13–17, 1999

    Google Scholar 

  72. Hector, Jr., L.G. and Hetnarski, R.B., Thermal Stresses in Materials due to Laser Heating, Chap. 6 in Thermal Stresses IV, R.B. Hetnarski, ed., Elsevier Science, Amsterdam, 1996

    Google Scholar 

  73. Hector, Jr., L.G. and Hetnarski, R.B., Thermal Stresses due to a Laser Pulse: the Elastic Solution, ASME J. Appl. Mech., Vol. 63, pp. 38–46, March 1996

    MATH  Google Scholar 

  74. Kim, W.S., Hector, Jr., L.G., and Hetnarski, R.B., Thermoelastic Stresses in a Bonded Layer due to Repetitively Pulsed Laser Radiation, Acta Mech., Vol. 125, pp. 107–128, 1997

    Article  MATH  Google Scholar 

  75. Tahrani, P.H., Hector, Jr., L.G., Hetnarski, R.B., and Eslami, M.R., Boundary Element Formulation for Thermal Stresses During Pulsed Laser Heating, ASME J. Appl. Mech., Vol. 68, pp. 480–489, May 2001

    Article  Google Scholar 

  76. Hetnarski, R.B. and Ignaczak, J., Generalized Thermoelasticity: Closed Form Solutions, J. Therm. Stresses, 4, Vol. 16, pp. 473–498, 1993

    Article  MathSciNet  Google Scholar 

  77. Hetnarski, R.B. and Ignaczak, J., Generalized Thermoelasticity: Response of Semi-Space to a Short Laser Pulse, J. Therm. Stresses, 3, Vol. 17, pp. 377–396, 1994

    Article  MathSciNet  Google Scholar 

  78. Fichera, G., A Boundary Value Problem Connected with Response of Semi-Space to a Short Laser Pulse, Rend. Mat. Acc. Lincei, Serie IX, Vol. 8, pp. 197–227, 1997

    MATH  MathSciNet  Google Scholar 

  79. Hetnarski, R.B. and Ignaczak, J., Nonlinear Dynamical Thermoelasticity, Int. J. Solids Struct., Vol. 37, pp. 215–224, 2000

    Article  MATH  MathSciNet  Google Scholar 

  80. Tosaka, N., Boundary Integral Equation Formulations for Linear Coupled Thermoelasticity, Proc. 3rd. Japan Symp. on BEM, Tokyo, pp. 207–212, 1986

    Google Scholar 

  81. Durbin, F., Numerical Inversion of Laplace Transforms: An Efficient Improvement to Dubner's and Abate's Method, Computer J., Vol. 17, pp. 371–376, 1974

    MATH  MathSciNet  Google Scholar 

  82. Sternberg, E. and Chakravorty, J.G., On Inertia Effects in a Transient Thermoelastic Problem, ASME J. Appl. Mech., Vol. 26, pp. 503–509, 1959

    MathSciNet  Google Scholar 

  83. Hosseini Tehrani, P. and Eslami, M.R., Boundary Element Analysis of Finite Domain Under Thermal and Mechanical Shock with the Lord– Shulman Theory, Proceedings of I. Mech. E, J. Strain Anal., Vol. 38, No. 1, 2003

    Google Scholar 

  84. Hosseini Tehrani, P. and Eslami, M.R., Boundary Element Analysis of Thermal and Mechanical Shock in a Two-Dimensional Finite Domain Considering Coupled Thermoelasticity, J. Eng. Anal. Bound. Elem., Vol. 24, pp. 249–257, 2000

    Article  MATH  Google Scholar 

  85. Hosseini Tehrani, P. and Eslami, M.R., Boundary Element Analysis of Green and Lindsay Theory Under Thermal and Mechanical Shock in a Finite Domain, J. Therm. Stresses, Vol. 23, No. 8, pp. 773–792, 2000

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V

About this chapter

Cite this chapter

(2009). Finite and Boundary Element Methods. In: Thermal Stresses – Advanced Theory and Applications. Solid Mechanics and its Applications, vol 158. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9247-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9247-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9246-6

  • Online ISBN: 978-1-4020-9247-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics