Skip to main content

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 158))

  • 4418 Accesses

A structure under thermal shock load, when the period of shock is of the same order of magnitude as the lowest natural frequency of the structure, should be analyzed through the coupled form of the energy and thermoelasticity equations. Analytical solutions of this class of problems are mathematically complex and are limited to those of an infinite body or a half-space, where the boundary conditions are simple. This chapter begins with the analytical solutions of a number of classical problems of coupled thermoelasticity for an infinite body and a half-space. Coupled thermoelasticity problem for a thick cylinder is discussed when the inertia terms are ignored. The generalized thermoelasticity problems for a layer, based on Green—Naghdi, Green—Lindsay, and Lord—Shulman models are discussed, when the analytical solution in the space domain is found. The solution in the time domain is obtained by numerical inversion of Laplace transforms. The generalized thermoelasticity of thick cylinders and spheres, in a unified form, is discussed, and problems are solved analytically in the space domain, while the inversion of Laplace transforms are carried out by numerical methods

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Ignaczak, J., Generalized Thermoelasticity and Its Applications, Chapter 4 in Thermal Stresses III, Editor R.B. Hetnarski, North-Holland, Elsevier,Amsterdam, 1989

    Google Scholar 

  2. Nowacki, W., Thermoelasticity, 2nd edition, PWN-Polish Scientific Publishers, Warsaw, and Pergamon Press, Oxford, 1986

    MATH  Google Scholar 

  3. Kovalenko, A.D., Thermoelasticity: Basic Theory and Application,Wolters-Noordhoff Groningen, The Netherlands, 1969

    Google Scholar 

  4. Nowacki, W., On Some Dynamic Problems of Thermoelasticity, Contributed to the book Problems of Continuum Mechanics, published by SIAM, Philadelphia, 1961

    Google Scholar 

  5. Boley, B.A. and Weiner, J.H., Theory of Thermal Stresses, Wiley, New York, 1960

    MATH  Google Scholar 

  6. Bahar, L.Y. and Hetnarski, R.B., State-Space Approach to Thermoelas-ticity, J. Therm. Stresses, Vol. 1, pp. 135–145, 1978

    Article  Google Scholar 

  7. Bahar, L.Y. and Hetnarski, R.B., Direct Approach to Thermoelasticity,J. Therm. Stresses, Vol. 2, pp. 135–147, 1979

    Article  Google Scholar 

  8. Bahar, L.Y. and Hetnarski, R.B., Connection Between the Thermoelastic Potential and the State-Space Approach of Thermoelasticity, J. Therm. Stresses, Vol. 2, pp. 283–290, 1979

    Article  Google Scholar 

  9. Bahar, L.Y. and Hetnarski, R.B., Coupled Thermoelasticity of Layered Medium, J. Therm. Stresses, Vol. 3, pp. 141–152, 1980

    Article  Google Scholar 

  10. Sherief, H.H., State-Space Formulation for Generalized Thermoelasticity with One Relaxation Time Including Heat Sources, J. Therm. Stresses,Vol. 16, pp. 163–180, 1993

    Article  MathSciNet  Google Scholar 

  11. Ezzat, M.A., Othman, M.I., and El-Karamany, A.S., State-Space Approach to Generalized Thermo-Viscoplasticity with Two Relaxation Times, Int. J. Eng. Sci., Vol. 40, pp. 283–302, 2002

    Article  Google Scholar 

  12. Ezzat, M.A., Othman, M.I., and El-Karamany, A.S., State-Space Approach to Two-Dimensional Generalized Thermoelasticity with One Relaxation Time, J. Therm. Stresses, Vol. 25, pp. 295–316, 2002

    Article  Google Scholar 

  13. Samanta, S.C. and Maishal, R.K., A Study on Magneto-Thermo-Viscoplastic Interactions in an Elastic Half-Space Subjectd to a Temperature Pulse, Using State-Space Approach, J. Therm. Stresses, Vol. 32,No. 3, 2009

    Google Scholar 

  14. Uflyand, Y.S., Survey of Articles on the Applications of Integral Theorems in the Theory of Elasticity, Appl. Math. Res. Group, North Carolina State Univ., Raleigh, pp. 20–23, 1965

    Google Scholar 

  15. Lebedev, N.N., Skalskaya, I.P., and Uflyand, Y.S., Problems of Mathematical Physics, pp. 337–338, Prentice Hall, Englewood Cliffs, New Jersey, 1968

    Google Scholar 

  16. Sneddon, I.N., Fourier Transforms, Chap. 9, McGraw-Hill, New York,1951

    Google Scholar 

  17. Dillon, Jr., O.W., Thermoelasticity when the Mechanical Coupling Parameter is Unity, J. Appl. Mech., ASME, Vol. 32, pp. 378–382, 1965

    Google Scholar 

  18. Boley, B.A. and Hetnarski, R.B., Propagation of Discontinuities in Coupled Thermoelastic Problems, J. Appl. Mech., ASME, Vol. 35, pp. 489–494, 1968

    MATH  Google Scholar 

  19. Myshkina, V.V., A Coupled Dynamic Problem of Thermoelasticity for a Layer in the Case of Short Intervals of Time, pp. 103–106, in Mechanics of Solids, Allerton, New York, 1968

    Google Scholar 

  20. Sherief, H.H. and Anwar, M.N., State-Space Approach to Two-Dimensional Generalized Thermoelasticity Problems, J. Therm. Stresses,Vol. 17, No. 4, pp. 567–590, 1994

    Article  MathSciNet  Google Scholar 

  21. Hetnarski, R.B., The Generalized D'Alembert Solution to the Coupled Equtions of Thermoelasticity, in: Progress in Thermoelasticity, VIII European Mechanics Colloquium (W.K. Nowacki, editor), Warsaw, 1967,publishd by PWN — Polish Scientific Publishers, Warsaw, pp. 121–131,1969

    Google Scholar 

  22. Agaryev, V.A., The Method of Initial Functions in Two-Dimensional Problems of the Theory of Elasticity (in Russian), Isdatelstvo Akademii Nauk Ukrainskoi SSR, Kiev, 1963

    Google Scholar 

  23. Chandrasekharaiah, D.S., Hyperbolic Thermoelasticity, A Review of Recent Literature, Appl. Mech. Rev., Vol. 51, pp. 705–729, 1998

    Google Scholar 

  24. Rossikhin, Y.A. and Shitikova, M.V., D'Alembert's Solution in Thermo-elasticity — Impact of a Rod against a Heated Barrier, Part I, A Case of Uncoupled Strain and Temperature Fields, J. Therm. Stresses, Vol. 32,No. 1–2, 2009

    Google Scholar 

  25. Rossikhin, Y.A. and Shitikova, M.V., D'Alembert's Solution in Thermo-elasticity — Impact of a Rod against a Heated Barrier, Part II, A Case of Coupled Strain and Temperature Fields, J. Therm. Stresses, Vol. 32,No. 3, 2009

    Google Scholar 

  26. Boley, B.A., Discontinuities in Integral-Transform Solution, Q. Appl.Math., Vol. 19, pp. 273–284, 1962

    MATH  MathSciNet  Google Scholar 

  27. Wagner, P., Fundamental Matrix of the System of Dynamic Linear Ther-moelasticity, J. Therm. Stresses, Vol. 17, No. 4, pp. 549–565, 1994

    Article  Google Scholar 

  28. Ortner, N. and Wagner, P., On the Fundamental Solution of the Operatorof Dynamic Linear Thermoelasticity, J. Math. Anal. Appl., 170, pp. 524–550, 1992

    Article  MATH  MathSciNet  Google Scholar 

  29. Hetnarski, R.B., Solution of the Coupled Problem of Thermoelasticity in the Form of Series of Functions, Archiwum Mechaniki Stosowanej, Vol. 16, pp. 919–941, 1964

    MATH  MathSciNet  Google Scholar 

  30. Jakubowska, M., Kirchhoff's Formula for Thermoelastic Solid, J. Therm. Stresses, Vol. 5, pp. 127–144, 1982

    Article  MathSciNet  Google Scholar 

  31. Hetnarski, R.B., Coupled Thermoelastic Problem for the Half-Space, Bull.Acad. Polon. Sci., Serie des Sciences Techniques, Vol. 12, pp. 49–57, 1964

    MATH  Google Scholar 

  32. Hetnarski, R.B., An Algorithm for Generating Some Inverse Laplace Transforms of Exponential Form, J. Appl. Math. Phys. ZAMP, 2, Vol.26, pp. 249–253, 1975

    Article  MATH  MathSciNet  Google Scholar 

  33. Hetnarski, R.B., Coupled One-Dimensional Thermal Shock Problem for Small Times, Archiwum Mechaniki Stosowanej, Vol. 13, pp. 295–306,1961

    MATH  MathSciNet  Google Scholar 

  34. Danilovskaya, V.I., Thermal Stresses in an Elastic Half-Space Arising after a Sudden Heating at its Boundary [in Russian], Prikl. Math. Mekh,Vol. 14, No. 3, 1950

    Google Scholar 

  35. Mura, T., Thermal Strains and Stresses in Transient State, Proc. Sec.Japan. Congress Appl. Mech., 1952

    Google Scholar 

  36. Sternberg, E. and Chakravorty, J.G., On Inertia Effects in a Transient Thermoelastic Problem, Tech. Rep. No. 2, Contract Nonr-562 (25), BrownUniversity, May, 1958

    Google Scholar 

  37. Gosn, A.H. and Sabbaghian, M., Quasi-Static Coupled Problems of Ther-moelasticity for Cylindrical Regions, J. Therm. Stresses, Vol. 5, No. 3–4,pp. 299–313, 1982

    Article  Google Scholar 

  38. Green, A.E. and Naghdi, P.M., A Re-examination of the Basic Postulates of Thermomechanics, Proc. Roy. Soc. London Ser. A., Vol. 432, pp. 171–194, 1991

    Article  MATH  MathSciNet  Google Scholar 

  39. Green, A.E. and Naghdi, P.M., Thermoelasticity Without Energy Dissipation, J. Elasticity, Vol. 31, pp. 189–208, 1993

    Article  MATH  MathSciNet  Google Scholar 

  40. Green, A.E. and Naghdi, P.M., On Undamped Heat Waves in an Elastic Solid, J. Therm. Stresses, Vol. 15, pp. 253–264, 1992

    Article  MathSciNet  Google Scholar 

  41. Chandrasekharaiah, D.S., A Uniqueness Theorem in the Theory of Ther-moelasticity Without Energy Dissipation, J. Therm. Stresses, Vol. 19,pp. 267–272, 1996

    Article  MathSciNet  Google Scholar 

  42. Chandrasekharaiah, D.S., One-Dimensional Wave Propagation in the Linear Theory of Thermoelasticity Without Energy Dissipation, J. Therm.Stresses, Vol. 19, pp. 695–710, 1996

    Article  MathSciNet  Google Scholar 

  43. Chandrasekharaiah, D.S. and Srinath, K.S., Axisymmetric Thermoelastic Interactions Without Energy Dissipation in an Unbounded Body with Cylindrical Cavity, J. Elasticity, Vol. 46, pp. 19–31, 1997

    Google Scholar 

  44. Chandrasekharaiah, D.S. and Srinath, K.S., Thermoelastic Interactions Without Energy Dissipation due to a Point Heat Source, J. Elasticity,Vol. 50, pp. 97–108, 1998

    Article  MATH  Google Scholar 

  45. Chandrasekharaiah, D.S., Complete Solutions in the Theory of Thermo-elasticity Without Energy Dissipation, Mech. Res. Comm., Vol. 24,pp. 625–630, 1997

    Article  MATH  MathSciNet  Google Scholar 

  46. Sharma, J.N. and Chauhan, R.S., Mechanical and Thermal Sources in a Generalized Thermoelastic Half-Space, J. Therm. Stresses, Vol. 24,pp. 651–675, 2001

    Article  Google Scholar 

  47. Li, H. and Dhaliwal, R.S., Thermal Shock Problem in Thermoelastic-ity Without Energy Dissipation, Indian J. Pure App. Math., Vol. 27,pp. 85–101, 1996

    MATH  Google Scholar 

  48. Taheri, H., Fariborz, S., and Eslami, M.R., Thermoelasticity Solution of a Layer Using the Green–Naghdi Model, J. Therm. Stresses, Vol. 27, No. 8,pp. 691–704, 2004

    Article  Google Scholar 

  49. Durbin, F., Numerical Inversion of Laplace Transforms: An Efficient Improvement to Dubner and Abate's Method, Computer J., Vol. 17, pp. 371–376, 1974

    MATH  MathSciNet  Google Scholar 

  50. Lord, H.W. and Shulman, Y., A Generalized Dynamical Theory of Ther-moelasticity, J. Mech. Phys. Solids, Vol. 15, pp. 299–309, 1967

    Article  MATH  Google Scholar 

  51. Green, A.E. and Lindsay, K.E., Thermoelasticity, J. Elasticity, Vol. 2,pp. 1–7, 1972

    Article  MATH  Google Scholar 

  52. Chen, J. and Dargush, G.F., Boundary Element Method for Dynamic Poroelastic and Thermoelastic Analysis, Int. J. Solids Struc., Vol. 32,No. 15, pp. 2257–2278, 1995

    Article  MATH  Google Scholar 

  53. Chen, H. and Lin, H., Study of Transient Coupled Thermoelastic Problems with Relaxation Times, Trans. ASME, J. Appl. Mech., Vol. 62, pp.208–215, 1995

    Article  MATH  Google Scholar 

  54. Hosseini Tehrani, P. and Eslami, M.R., Boundary Element Analysis of Coupled Thermoelasticity with Relaxation Time in Finite Domain,J. AIAA, Vol. 38, No. 3, pp. 534–541, 2000

    Article  Google Scholar 

  55. Bagri, A. and Eslami, M.R., Generalized Coupled Thermoelasticity of Disks Based on the Lord—Shulman Model, J. Therm. Stresses, Vol. 27,No. 8, pp. 691–704, 2004

    Article  Google Scholar 

  56. Bagri, A., Taheri, H., Eslami, M.R., and Fariborz, S., Generalized Coupled Thermoelasticity of a Layer, J. Therm. Stresses, Vol. 29, No. 4. pp. 359–370, 2006

    Article  Google Scholar 

  57. Honig, G. and Hirdes, U., A Method for the Numerical Inversion of Laplace Transforms, J. Comp. App. Math., Vol. 10, pp. 113–132, 1984

    Article  MATH  MathSciNet  Google Scholar 

  58. Hosseini Tehrani, P. and Eslami, M.R., Boundary Element Analysis of Finite Domains Under Thermal and Mechanical Shock with the Lord—Shulman Theory, J. Strain Anal., Vol. 38, No.1, pp. 53–64, 2003

    Article  Google Scholar 

  59. Bagri, A. and Eslami, M.R., A Unified Generalized Thermoelasticity Formulation: Application to Thick Functionally Graded Cylinders, J. Therm.Stresses, special issue devoted to the 70th Birthday of Józef Ignaczak,Vol. 30, No. 9 and 10, pp. 911–930, 2007

    Google Scholar 

  60. Bagri, A. and Eslami, M.R., A Unified Generalized Thermoelasticity: Solution for Cylinders and Spheres, Int. J. Mech. Sci., Vol. 49, pp. 1325–1335,2007

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V

About this chapter

Cite this chapter

(2009). Coupled and Generalized Thermoelasticity. In: Thermal Stresses – Advanced Theory and Applications. Solid Mechanics and its Applications, vol 158. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9247-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9247-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9246-6

  • Online ISBN: 978-1-4020-9247-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics