Skip to main content

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 158))

Thick cylinders, spheres, and disks are components of many structural systems. Due to their capacity to withstand high pressures, radial loads, and radial temperature gradients, the problem of thermal stress calculations is an important design issue. This chapter presents the method to calculate thermal stresses in such structural members which are made either of homogeneous/isotropic materials or of functionally graded materials. The latter ones, classified as new materials, are mainly designed to withstand high temperatures and high temperature gradients, and they may be designed in such a way that the applied loads, mechanical or thermal, produce a uniform stress distribution across their radial direction. Functionally graded materials exhibit the unique design features, where by selection of proper grading profiles, stress distribution within the element may be optimized

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Hetnarski, R.B. and Ignaczak, J., Mathematical Theory of Elasticity,Taylor and Francis, New York, 2004

    MATH  Google Scholar 

  2. Gatewood, B.E., Thermal Stresses, McGraw-Hill, New York, 1957

    MATH  Google Scholar 

  3. Gatewood, B.E., Thermal Stresses in Long Cylindrical Bodies, Phil. Mag.,Ser. 7, Vol. 32, pp. 282–301, 1941

    MATH  MathSciNet  Google Scholar 

  4. Nowacki, W., Thermoelasticity, 2nd edition, PWN-Polish Scientific Publishers, Warsaw, and Pergamon Press, Oxford, 1986

    Google Scholar 

  5. Boley, B.A. and Weiner, J.H., Theory of Thermal Stresses, Wiley, New York, 1962

    Google Scholar 

  6. Sabbaghian, M. and Eslami, M.R., Creep Relaxation of Non Axisymmetric Thermal Stresses in Thick Walled Cylinders, AIAA J. Vol. 12, No. 12,pp. 1652–1658, 1974

    Article  MATH  Google Scholar 

  7. Muskhelishvili, N.I., Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Groningen, Holland, 1953

    MATH  Google Scholar 

  8. Wang, C.T., Applied Elasticity, McGraw-Hill, New York, 1953

    MATH  Google Scholar 

  9. Zimmerman, R.W. and Lutz, M.P., Thermal Stress and Thermal Expansion in a Uniformly Heated Functionally Graded Cylinder, J. Therm.Stresses, Vol. 22, pp. 177–188, 1999

    Article  Google Scholar 

  10. Han, X., Liu, G.R., and Lam, K.Y., A Quadratic Layer Element for Analyzing Stress Waves in FGMs and Its Applications in Material Characterization, J. Sound Vib., Vol. 236, No. 2, pp. 307–321, 2000

    Article  Google Scholar 

  11. Obata, Y. and Noda, N., Transient Thermal Stresses in a Hollow Sphere of Functionally Gradient Material, Proceedings of Thermal Stresses Symposium, Shizuoka University, Hamamatsu, pp. 335–338, 1995

    Google Scholar 

  12. Obata, Y. and Noda, N., Two-Dimensional Unsteady Thermal Stresses in a Partially Heated Plate Made of Functionally Graded Material, Proceedings of Thermal Stresses Symposium, Rochester Institute of Technology,Rochester, pp. 735–738, 1997

    Google Scholar 

  13. Obata, Y., Kanayama, K., Ohji, T., and Noda, N., Two-Dimensional Unsteady Thermal Stresses in a Partially Heated Circular Cylinder Made of Functionally Graded Material, Proceedings of the Third Congress on Thermal Stresses, Kraków University of Tech., Kraków, Poland, pp. 595–598, 1999

    Google Scholar 

  14. Jabbari, M., Sohrabpour, S., and Eslami, M.R., Mechanical and Thermal Stresses in a Functionally Graded Hollow Cylinder due to Radially Symmetric Loads, Int. J. Pres. Ves. Pip., Vol. 79, pp. 493—497, 2002

    Article  Google Scholar 

  15. Jabbari, M., Sohrabpour, S., and Eslami, M.R., General Solution for Mechanical and Thermal Stresses in a Functionally Graded Hollow Cylinder due to Nonaxisymmetric Steady-State Loads, J. Appl. Mech., Vol. 70, pp.111–118, 2003

    Article  MATH  Google Scholar 

  16. Katsuo, M., Sawa, T., Kawaguchi, K., and Kawamura, H., Axisymmetrical Thermal Stress Analysis of Laminated Composite Finite Hollow Cylinders Restricted at Both Ends in Steady State, Proceedings of the 1996 ASME International Mechanical Engineering Congress and Exposition,pp. 17–22, 1996

    Google Scholar 

  17. Okumura, I.A. and Noda, N., Thermoelastic Potential Functions in Transversely Isotropic Solids and Their Applications. J. Therm. Stresses,Vol. 14, No. 3, pp. 309–331, 1991

    Article  MathSciNet  Google Scholar 

  18. Misra, J.C. and Achari, R.M., On Axisymmetric Thermal Stresses in an Anisotropic Hollow Cylinder, J. Therm. Stresses, Vol. 3, No. 4, pp. 509–520, 1980

    Article  Google Scholar 

  19. Chen, P.Y.P., Axisymmetric Thermal Stresses in an Anisotropic Finite Hollow Cylinder, J. Therm. Stresses, Vol. 6, No. 2–4, pp. 197–205, 1980

    Google Scholar 

  20. Lu, Y., Xiao, J., and Zhang, K., Steady-State Temperature Distribution and Thermal Stress of Functionally Gradient Material Cylinder,Wuhan Jiaotong Keji Daxue Xuebao/Journal of Wuhan Transportation University, Vol. 21, No. 2, pp. 158–163 (in Chinese), 1997

    Google Scholar 

  21. Horgan, C.O. and Chan, A.M., The Pressurized Hollow Cylinder or Disk Problem for Functionally Graded Isotropic Linearly Elastic Materials,J. Elasticity, Vol. 55, pp. 4359, 1999

    MathSciNet  Google Scholar 

  22. Tutuncu, N. and Ozturk, M., The Exact Solution for Stresses in Functionally Graded Pressure Vessels, Composites, Part B, Vol. 32, pp. 683–686, 2001

    Article  Google Scholar 

  23. Liew, K.M., Kitipornchai, S., Zhang, X.Z., and Lim, C.W., Analysis of the Thermal Stress Behaviour of Functionally Graded Hollow Circular Cylinders, Int. J. Solids Struct., Vol. 40, pp. 2355–2380, 2003

    Article  MATH  Google Scholar 

  24. X.D., Liu, D.Q., and Ge. C., Thermal Stress Analysis of Axial Symmetry Functionally Gradient Materials under Steady Temperature Field, J. Funct. Grad. Mater., Vol. 25, pp. 452–455, 1994

    Google Scholar 

  25. Obata, Y. and Noda, N., Steady Thermal Stresses in a Hollow Circular Cylinder and a Hollow Sphere of a Functionally Gradient Material,J. Therm. Stresses, Vol. 17, No. 3, pp. 471–487, 1994

    Article  Google Scholar 

  26. Jabbari, M., Bahtui, A., and Eslami, M.R., Axisymmetric Mechanical and Thermal Stresses in Thick Long FGM Cylinders, J. Therm. Stresses,Vol. 29, No. 7, pp. 643—663, 2006

    Article  Google Scholar 

  27. Bahtui, A., Jabbari, M., and Eslami, M.R., Mechanical Stresses in Thick FGM Pressure Vessels, Proceedings, Int. Congress and Exhibition on Pressure Vessel and Piping, OPE 2006, Channai, India, 7–9, Feb. 2006

    Google Scholar 

  28. Jabbari, M., Mohazzab, A.H., Bahtui, A., and Eslami, M.R., Analytical Solution for Three-Dimensional Stresses in a Short Length FGM Hollow Cylinder, ZAMM, Vol. 87, No. 6, pp. 413–429, 2007

    Article  MATH  MathSciNet  Google Scholar 

  29. Rice, R.G. and Do, D.D., Applied Mathematics and Modeling for Chemical Engineering, Wiley, New York, pp. 131–132, 1995

    Google Scholar 

  30. Cheung, J.B., Chen, T.S., and Thirumalai, K., Transient Thermal Stresses in a Sphere by Local Heating, ASME J. Appl. Mech., Vol. 41, No. 4,pp. 930—934, 1974

    MATH  Google Scholar 

  31. Takeuti, Y. and Tanigawa, Y., Transient Thermal Stresses of a Hollow Sphere due to Rotating Heat Source, J. Therm. Stresses, Vol. 5, No. 3–4,pp. 283–298, 1982

    Article  Google Scholar 

  32. Sternberg, E., Eubanks, E.A., and Sadowsky, M.A., On the Axisymmetric Problem of Elasticity Theory for a Region Bounded by Two Concentric Spheres, Proc. First US National Congress of Appl. Mech., ASME, New York, pp. 209–215, 1952

    Google Scholar 

  33. Lutz, M.P. and Zimmerman, R.W., Thermal Stresses and Effective Thermal Expansion Coefficient of a Functionally Graded Sphere, J. Therm.Stresses, Vol. 19, pp. 39–54, 1996

    Article  MathSciNet  Google Scholar 

  34. Obata, Y. and Noda, N., Steady Thermal Stress in a Hollow Circular Cylinder and a Hollow Sphere of a Functionaly Gradient Material,J. Therm. Stresses, Vol. 14, pp. 471–487, 1994

    Article  Google Scholar 

  35. Obata, Y. and Noda, N., Transient Thermal Stresses in a Hollow Sphere of Functionally Gradient Material, Proceedings of Thermal Stresses Symposium, Shizuoka University, Hamamatsu, pp. 335—338, 1995

    Google Scholar 

  36. Noda, N., Thermal Stresses in Materials with Temperature-Dependent Properties, Chap. 6 in Thermal Stresses I, R.B. Hetnarski, ed., Elsevier Science, Amsterdam, 1986

    Google Scholar 

  37. Eslami, M.R., Babaei, M.H., and Poultangari, R., Thermal and Mechanical Stresses in a Functionally Graded Thick Sphere, Int. J. Pres. Ves. Pip.,Vol. 82, pp. 522–527, 2005

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V

About this chapter

Cite this chapter

(2009). Disks, Cylinders, and Spheres. In: Thermal Stresses – Advanced Theory and Applications. Solid Mechanics and its Applications, vol 158. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9247-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9247-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9246-6

  • Online ISBN: 978-1-4020-9247-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics