Skip to main content

Flux Control Analysis of the Rate of Photosynthetic CO2 Assimilation

  • Chapter
  • 2004 Accesses

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 29))

Metabolic flux control analysis offers an opportunity to understand how fluxes are determined and thus how they can be increased. Enzymes are assigned a control coefficient (usually between zero and one) which is a measure of the degree to which the flux is sensitive to small changes in enzyme concentration. This chapter examines research on the application of control analysis to the photosynthetic system of C3 plants, specifically the net rate of CO2 fixation. Control coefficients have been measured for a number of the enzymes, typically by reducing the concentration of a target enzyme in transgenic plants then comparing their flux and enzyme concentrations to those of the wild type. There have been surprisingly many difficulties with this approach. Firstly, many transgenic plants have markedly lower enzyme concentrations than the wild type, so it has been difficult to make accurate estimations of the enzyme-flux relationship in the vicinity of the wild type value. Second, natural variation, compounded by variation due to a lack of precision in measurements, has often required a very large number of replicates in order to detect significant values. Many studies have not used sufficient replication. Third, confounding variables, such as ontogenetic variation and untargeted changes in the concentration of other enzymes, have not always been identified and taken into account. As a consequence of these challenges, there are few studies in which control coefficients have been detected with a high degree of certainty. This situation is set to improve, however, with the use of transgenic plants with both an increased and decreased target enzyme concentration. Several such studies have now been published, and in two cases, estimates of the control coefficients have been markedly improved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cornish-Bowden A and Hofmeyr JHS (1994) Determination of control coefficients in intact metabolic systems. Biochem J 298: 367–375

    PubMed  CAS  Google Scholar 

  • Cowan IR (1986) Economics of carbon fixation in higher plants. In: Givnish, TJ (ed) On the Economy of Plant Form and Function, pp 133–170. Cambridge University Press, Cambridge

    Google Scholar 

  • Haake V, Zrenner R, Sonnewald U and Stitt M (1998) A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch, and inhibits growth of potato plants. Plant J 14: 147–157

    Article  PubMed  CAS  Google Scholar 

  • Haake V, Geiger M, Walch-Liu P, Engels C, Zrenner R and Stitt M (1999) Changes in aldolase activity in wild-type potato plants are important for acclimation to growth irra-diance and carbon dioxide concentration, because plastid aldolase exerts control over the ambient rate of photosynthesis across a range of growth conditions. Plant J 17: 479–489

    Article  CAS  Google Scholar 

  • Hajirezaei MR, Peisker M, Tschiersch H, Palatnik JF, Valle EM, Carrillo N and Sonnewald U (2002) Small changes in the activity of NADP+-dependent ferredoxin oxi-doreductase lead to impaired plant growth and restrict photosynthetic activity in transgenic tobacco plants. Plant J 29: 281–293

    Article  PubMed  CAS  Google Scholar 

  • Hammond ET, Andrews TJ, Mott KA and Woodrow IE (1998) Regulation of Rubisco activation in antisense plants of tobacco containing reduced levels of Rubisco activase. Plant J 14: 101–110

    Article  PubMed  CAS  Google Scholar 

  • Harrison EP, Willingham NM, Lloyd JC and Raines CA (1998) Reduced sedoheptulose-1,7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation. Planta 204: 27–36

    Article  CAS  Google Scholar 

  • Häusler RE, Schlieben NH and Flügge UI (2000) Control of carbon partitioning and photosynthesis by the triose phosphate/phosphate translocator in transgenic tobacco plants (Nicotiana tabacum). II. Assessment of control coefficients of the triose phosphate/phosphate transloca-tor. Planta 210: 383–390

    Article  PubMed  Google Scholar 

  • Heinrich R and Rapoport TA (1974) A linear steady state treatment of enzymatic chains. Eur J Biochem 42: 89–95

    Article  PubMed  CAS  Google Scholar 

  • Henkes S, Sonnewald U, Badur R, Flachmann R and Stitt M (2001) A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell 13: 535–551

    Article  PubMed  CAS  Google Scholar 

  • Jiang C-Z, Quick WP, Aired R, Kliebenstein D, Rodermel SR (1994) Antisense inhibiton of Rubisco activase expression. Plant J 5: 787–98

    Article  CAS  Google Scholar 

  • Kacser H and Burns JA (1973) The control of flux. Symp Soc Exp Biol 27: 65–104

    PubMed  CAS  Google Scholar 

  • Kirschhoff H, Horstmann S and Weis E (2000) Control of the photosynthetic electron transport by PQ diffusion microdomains in thylakoids of higher plants. Biochim Biophys Acta 1459: 148–168

    Article  Google Scholar 

  • Kossman J, Sonnewald U and Willmitzer L (1994) Reduction of the chloroplastic fructose 1,6-bisphosphatase in transgenic potato plants impairs photosynthesis and plant growth. Plant J 6: 637–650

    Article  Google Scholar 

  • Lefebvre S, Lawson T, Zakhleniuk OV, Lloyd JC and Raines CA (2005) Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol 138: 451–460

    Article  PubMed  CAS  Google Scholar 

  • Miyagawa Y, Tamoi M, and Shigeoka S (2001) Overexpres-sion of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. Nature Biotech 19: 965–969

    Article  CAS  Google Scholar 

  • Ölçer H, Lloyd JC, and Raines CA (2001) Photosyn-thetic capacity is differentially affected by reductions in sedoheptulose-1,7-bisphosphatase activity during leaf development in transgenic tobacco plants. Plant Physiol 125: 982–989

    Article  PubMed  Google Scholar 

  • Paul MJ, Knight JS, Habash D, Parry MAJ, Lawlor DW, Barnes SA, Loynes A and Gray JC (1995) Reduction in phosphoribulokinase activity by antisense RNA reduces CO2 assimilation and growth in low irradiance. Plant J 7: 535–542

    Article  CAS  Google Scholar 

  • Paul MJ, Driscoll SP, Andralojc PJ, Knight JS, Gray JC and Lawlor DW (2000) Decrease of phosphoribuloki-nase activity by antisense RNA in transgenic tobacco: definition of the light environment under which phos-phoribulokinase is not in large excess. Planta 211: 112– 119

    Article  PubMed  CAS  Google Scholar 

  • Pettersson G (1996) Errors associated with experimental determinations of enzyme flux control coefficients. J Theor Biol 179: 191–197

    Article  CAS  Google Scholar 

  • Pettersson G and Ryde-Pettersson U (1988) A mathematical model of the Calvin photosynthesis cycle. Eur J Biochem 175: 661–672

    Article  PubMed  CAS  Google Scholar 

  • Portis AR Jr (2003) Rubisco activase — Rubisco's catalytic chaperone. Photosynth Res 75: 11–27

    Article  PubMed  CAS  Google Scholar 

  • Price GD, Von Caemmerer S, Evans JR, Yu JW, Lloyd J, Oja V, Kell P, Harrison K, Gallagher A and Badger MR (1994) Specific reduction of chloroplast carbonic anhy-drase activity by antisense RNA in transgenic tobacco plants has a minor effect on photosynthetic CO2 assimilation. Planta 193: 331–340

    Article  CAS  Google Scholar 

  • Price GD, Evans JR, Von Caemmerer S, Yu JW and Badger MR (1995a) Specific reduction of chloroplast glycer-aldehyde 3-phosphate dehydrogenase activity by antisense RNA reduces CO2 assimilation via a reduction in ribulose bisphosphate regeneration in transgenic tobacco plants. Planta 195: 369–378

    Article  CAS  Google Scholar 

  • Price GD, Yu JW, Von Caemmerer S, Evans JR, Chow WS, Anderson JM, Hurry V and Badger MR (1995b) Chloroplast cytochrome b(6)/f and ATP synthase complexes in tobacco — transformation with antisense RNA against nuclear encoded transcripts for the Rieske FeS and ATP-delta polypeptides. Aust J Plant Physiol 22: 285–297

    CAS  Google Scholar 

  • Price GD, Von Caemmerer S, Evans JR, Siebke K, Anderson JM and Badger MR (1998) Photosynthesis is strongly reduced by antisense suppression of chloroplastic cytochrome bf complex in transgenic tobacco. Aust J Plant Physiol 25: 445–452

    CAS  Google Scholar 

  • Quick WP, Fichtner K, Schulze E-D, Wendler R, Leegood RC, Mooney H, Rodermel SR, Bogorad L and Stitt M (1992) Decreased ribulose-l,5-bisphosphate carboxy-lase/oxygenase in transgenic tobacco transformed with “antisense” rbcS. IV. Impact on photosynthesis and plant growth altered nitrogen supply. Planta 188: 522–531

    Article  CAS  Google Scholar 

  • Raines CA (2003) The Calvin cycle revisited. Photosynth Res 75: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Raines CA, Harrison EP, Ölçer H and Lloyd JC (2000) Investigating the role of the thiol-regulated enzyme sedoheptulose-1,7-bisphosphatase in the control of photosynthesis. Physiol Plant 110: 303–308

    Article  CAS  Google Scholar 

  • Small JR (1993) Flux control coefficients determined by inhibitor titration: the design and analysis of experiments to reduce errors. Biochem J 296: 423–433

    PubMed  CAS  Google Scholar 

  • Small JR and Kacser H (1993) Responses of metabolic systems to large changes in enzyme activities and effectors. 1. The linear treatment of unbranced chains. Eur J Biochem 213: 613–624

    Article  PubMed  CAS  Google Scholar 

  • Stitt M and Schultze E-D (1994) Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant Cell Environ 17: 465–487

    Article  CAS  Google Scholar 

  • Stitt M and Sonnewald U (1995) Regulation of metabolism in transgenic plants. Annu Rev Plant Physiol Plant Mol Biol 46: 341–368

    Article  CAS  Google Scholar 

  • Suzuki Y, Ohkubo M, Hatakeyama H, Ohashi K, Yoshizawa R, Kojima S, Hayakawa T, Yamaya T, Mae T and Makino A (2007) Increased Rubisco content in transgenic rice transformed with the ‘sense’ rbcS gene. Plant Cell Physiol 48: 626–637

    Article  PubMed  CAS  Google Scholar 

  • Tamoi M, Nagaoka M, Miyagawa Y and Shigeoka S (2006) Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants. Plant Cell Physiol 47: 380–390

    Article  PubMed  CAS  Google Scholar 

  • Thomas S and Fell DA (1994) Metabolic control analysis — sensitivity of control coefficients to experimentally determined variables. J Theor Biol 167: 175–200

    Article  Google Scholar 

  • Woodrow IE (1986) Control of the rate of photosynthetic carbon dioxide fixation. Biochim Biophys Acta 851: 181–192

    Article  CAS  Google Scholar 

  • Woodrow IE and Berry JA (1988) Enzymatic regulation of photosynthetic CO2 fixation in C3 plants. Annu Rev Plant Physiol Plant Mol Biol 39: 533–594

    CAS  Google Scholar 

  • Woodrow IE and Mott KA (1988) A quantitative assessment of the degree to which RuBP carboxylase/oxygenase limits the steady state rate of photosynthesis during sun-shade acclimation of Helianthus annuus. Aust J Plant Physiol 15: 253–262

    Article  CAS  Google Scholar 

  • Woodrow IE and Mott KA (1993) Modelling C3 photosynthesis: a sensitivity analysis of the photosynthetic carbon reduction cycle. Planta 191: 421–432

    Article  CAS  Google Scholar 

  • Woodrow IE, Ball JT and Berry JA (1990) Control of photosynthetic carbon dioxide fixation by the boundary layer, stomata and ribulose 1,5-bisphosphate carboxy-lase/oxygenase. Plant Cell Environ 13: 339–347

    Article  CAS  Google Scholar 

  • Wu HR, Li LB, Jing YX and Kuang TY (2007) Over- and antisense expressions of the large isoform of ribulose-1,5-bisphosphate carboxylase/oxygenase activase gene in Oryza sativa affect the photosynthetic capacity. Photosyn-thetica 45: 194–201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Woodrow, I.E. (2009). Flux Control Analysis of the Rate of Photosynthetic CO2 Assimilation. In: Laisk, A., Nedbal, L., Govindjee (eds) Photosynthesis in silico . Advances in Photosynthesis and Respiration, vol 29. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9237-4_15

Download citation

Publish with us

Policies and ethics