Skip to main content

Brick Elements for Finite Deformations Based on Macro-concepts and on Inhomogeneous Mode Enhancement

  • Chapter
ECCOMAS Multidisciplinary Jubilee Symposium

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 14))

  • 1052 Accesses

Two three-dimensional eight-node brick continuum finite elements are presented which are based on volume averaging techniques. For both elements, the point of departure is the additive split of the strain energy function into a homogeneous and an inhomogeneous part. The first element, called MEI, can be applied for robust computations of incompressibly materials. It is based on a split into a substructure consisting of eight sub-elements inside each finite element, further referred to as macro-element. For each sub-element, the deformation is averaged. The resulting sub-element response is assembled and projected onto the nodes of the macro-element. The second element, called Q1/EI9 (Q1/EI12), uses an enhancement of the inhomogeneous part of the deformation only. For the inhomogeneous part, linear elasticity is assumed, while a compressible Neo-Hooke material is used for the homogeneous part. Thus, an element which is locking and hourglassing free as well as insensitive to initial element distortion is developed. In several examples, the performance of the elements is tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andelfinger, U., Ramm, E.: EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. Int. J. Numer. Meth. Eng. 36, 1311–1337 (1993)

    Article  MATH  Google Scholar 

  2. Belytschko, T., Bindeman, L.P.: Assumed strain stabilization of the eight node hexahedral element. Comp. Meth. Appl. Mech. Eng. 105, 225–260 (1993)

    Article  MATH  Google Scholar 

  3. Belytschko, T., Ong, J.S., Liu, W.K., Kennedy, J.M.: Hourglass control in linear and nonlinear problems. Comp. Meth. Appl. Mech. Eng. 43, 251–276 (1984)

    Article  MATH  Google Scholar 

  4. Boerner, E.F.I., Loehnert, S., Wriggers, P.: A new finite element based on the theory of a Cosserat point — Extension to initially distorted elements for 2D plane strain. Int. J. Numer. Meth. Eng. 71, 454–472 (2007)

    Article  MathSciNet  Google Scholar 

  5. Boerner, E.F.I., Wriggers, P.: A macro-element for incompressible finite deformations based on a volume averaged deformation gradient. Comput. Mech. 42, 407–416 (2008)

    Article  Google Scholar 

  6. Camacho, G.T., Ortiz, M.: Computational modeling of impact damage in brittle materials. Int. J. Solid. Struct. 33, 2899–2938 (1996)

    Article  MATH  Google Scholar 

  7. Glaser, S., Armero, F.: On the formulation of enhanced strain finite elements in finite deformations. Eng. Comput. 14, 759–791 (1997)

    Article  MATH  Google Scholar 

  8. Korelc, J., Wriggers, P.: Consistent gradient formulation for a stable enhanced strain method for large deformations. Eng. Comput. 13, 103–123 (1996)

    Article  Google Scholar 

  9. Loehnert, S., Boerner, E.F.I., Rubin, M.B., Wriggers, P.: Response of a nonlinear elastic general Cosserat brick element in simulations typically exhibiting locking and hourglassing. Comput. Mech. 36, 266–288 (2005)

    Article  Google Scholar 

  10. MacNeal, R.H., Harder, R.L.: A proposed standard set of problems to test finite element accuracy. Finite Elem. Anal. Des. 1, 3–20 (1985)

    Article  Google Scholar 

  11. Moita, G.F., Crisfield, M.A.: A finite element formulation for 3-D continua using the co-rotational technique. Int. J. Numer. Meth. Eng. 33, 3775–3792 (1996)

    Article  MathSciNet  Google Scholar 

  12. Mueller-Hoeppe, D.S., Loehnert, S., Wriggers, P.: A brick element with inhomogeneous mode enhancement. Submitted to Int. J. Numer. Meth. Eng

    Google Scholar 

  13. Nadler, B., Rubin, M.B.: A new 3-D finite element for nonlinear elasticity using the theory of a Cosserat point. Int. J. Solid. Struct. 40, 4585–4614 (2003)

    Article  MATH  Google Scholar 

  14. Reese, S.: On a physically stabilized one point finite element formulation for three-dimensional finite elasto-plasticity. Comp. Meth. Appl. Mech. Eng. 194, 4685–4715 (2005)

    Article  MATH  Google Scholar 

  15. Reese, S., Küssner, M., Reddy, B.D.: A new stabilization technique for finite elements in non-linear elasticity. Int. J. Numer. Meth. Eng. 44, 1617–1652 (1999)

    Article  MATH  Google Scholar 

  16. Reese, S., Wriggers, P., Reddy, B.D.: A new locking-free brick element technique for large deformation problems in elasticity. Comput. Struct. 75, 291–304 (2000)

    Article  MathSciNet  Google Scholar 

  17. Simo, J.C., Armero, F.: Geometrically nonlinear enhanced strain mixed methods and the method of incompatible modes. Int. J. Numer. Meth. Eng. 33, 1413–1449 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Simo, J.C., Armero F., Taylor, R.L.: Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Comp. Meth. Appl. Mech. Eng. 110, 359–386 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Simo, J.C., Rifai, M.S.: A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Numer. Meth. Eng. 29, 1595–1638 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sussman, T., Bathe, K.: A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comput. Struct. 26, 357–409 (1987)

    Article  MATH  Google Scholar 

  21. Thoutireddy, P., Molinari, J.F., Repetto, E.A., Ortiz, M.: Tetrahedral composite finite elements. Int. J. Numer. Meth. Eng. 53, 1337–1351 (2000)

    Article  Google Scholar 

  22. Wilson, E.L., Taylor, R.L., Doherty, W.P., Ghaboussi, J.: Numerical and Computer Models in Structural Mechanics. In: S.J. Fenves, N. Perrone, A.R. Robinson, and W.C. Schnobrich (eds.) Numerical and Computer Models in Structural Mechanics, Academic New york, 1973

    Google Scholar 

  23. Wriggers, P., Korelc, J.: On enhanced strain methods for small and finite deformations of solids. Comput. Mech. 18, 413–428 (1996)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Wriggers, P., Mueller-Hoeppe, D.S., Loehnert, S. (2009). Brick Elements for Finite Deformations Based on Macro-concepts and on Inhomogeneous Mode Enhancement. In: Eberhardsteiner, J., Hellmich, C., Mang, H.A., Périaux, J. (eds) ECCOMAS Multidisciplinary Jubilee Symposium. Computational Methods in Applied Sciences, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9231-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9231-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9230-5

  • Online ISBN: 978-1-4020-9231-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics