Computing Interfaces in Diverse Applications

  • E. Javierre
  • F. J. Vermolen
  • C. Vuik
  • P. Wesseling
  • S. van der Zwaag
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 14)

Mathematical models and computing methods for problems involving moving interfaces are considered. These occur in a great variety of applications, and mathematical models provide a unifying framework, facilitating interdisciplinary cooperation. We discuss and propose some generic numerical methods for problems involving moving interfaces. The level set method is used for interface capturing. A Cartesian and a finite element mesh are used simultaneously. This facilitates efficient local mesh refinement and derefinement for accurate computation of physical effects occurring at the interfaces, that move and may undergo topological change. The method has been implemented in three dimensions. We present examples from materials science (homogenization) and medical technology (wound healing).


moving interface level set method adaptive mesh refinement cut-cell method epidermal wound healing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Adalsteinsson and J. A. Sethian, The fast construction of extension velocities in level set methods, J. Comput. Phys., 148 (1999), pp. 2–22MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    J. U. Brackbill, D. B. Kothe, and C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys., 100 (1992), pp. 335–354MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Ration. Mech. Anal., 92 (1986), pp. 205–245MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    G. Caginalp, Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations, Phys. Rev. A, 39(3) (1989), pp. 5887–5896CrossRefMathSciNetGoogle Scholar
  5. 5.
    S. Chen, B. Merriman, S. Osher, and P. Smereka, A simple level set method for solving Stefan problems, J. Comput. Phys., 135 (1997), pp. 8–29MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    C. S. Hogea, B. T. Murray, and J. A. Sethian, Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method, J. Math. Biol., 53 (2006), pp. 86–134MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    E. Javierre, F. J. Vermolen, C. Vuik, and S.van der Zwaag, A mathematical analysis of physiological and morphological aspects of wound closure, J. Math. Biol., submitted (2008), p. 18 pagesGoogle Scholar
  8. 8.
    E. Javierre, C. Vuik, F. J. Vermolen, and A. Segal, A level set method for three dimensional vector Stefan problems: dissolution of stoichiometric particles in multi-component alloys, J. Comput. Phys., 224 (2007), pp. 222–240MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    E. Javierre PÉrez, Numerical methods for vector Stefan models of solid-state alloys, Ph.D. thesis, Delft University of Technology, 2006Google Scholar
  10. 10.
    D. Juric and G. Tryggvason, A front-tracking method for dendritic solidification, J. Comput. Phys., 123 (1996), pp. 127–148MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Y.-T. Kim, N. Goldenfeld, and J. Dantzig, Computation of dendritic microstructures using a level set method, Phys. Rev. E, 62 (2000), pp. 2471–2474CrossRefGoogle Scholar
  12. 12.
    I. KovaČ eviĆ and B. Š arler, Solution of a phase-field model for dissolution of primary particles in binary aluminium alloys by an r-adaptive mesh-free method, Mater. Sci. Eng. A, 413–414 (2005), pp. 423–428Google Scholar
  13. 13.
    M.-C. Lai and C. S. Peskin, An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput. Phys., 160 (2000), pp. 705–719MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    B. T. Murray, A. A. Wheeler, and M. E. Glicksman, Simulations of experimentally observed dendritic growth behavior using a phase-field model, J. Cryst. Growth, 154 (1995), pp. 386–400CrossRefGoogle Scholar
  15. 15.
    W. D. Murray and F. Landis, Numerical and machine solutions of transient heat conduction problems involving melting or freezing, Transactions ASME (C), J. Heat Transf., 245 (1959), pp. 106–112Google Scholar
  16. 16.
    B. Nedjar, An enthalpy-based finite element method for nonlinear heat problems involving phase change, Comput. Struct., 80 (2002), pp. 9–21CrossRefGoogle Scholar
  17. 17.
    S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces, vol. 153 of Applied Mathematical Sciences, Springer, New York, 2003MATHGoogle Scholar
  18. 18.
    S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), pp. 12–49MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, A PDE-based fast local level set method, J. Comput. Phys., 155 (1999), pp. 410–438MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    G. Segal, K. Vuik, and F. Vermolen, A conserving discretization for the free boundary in a two-dimensional Stefan problem, J. Comput. Phys., 141 (1998), pp. 1–21MATHCrossRefGoogle Scholar
  21. 21.
    J. A. Sethian, Level set methods, vol. 3 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, 1996. Evolving interfaces in geometry, fluid mechanics, computer vision, and materials scienceGoogle Scholar
  22. 22.
    J. A. Sethian, Theory, algorithms, and applications of level set methods for propagating interfaces, vol. 5 of Acta Numerica, Cambridge University Press, Cambridge, 1996, pp. 309–395Google Scholar
  23. 23.
    M. Sussman and E. Fatemi, An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow, SIAM J. Sci. Comput., 20 (1999), pp. 1165–1191 (electronic)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    M. Sussman, P. Smereka, and S. Osher, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114 (1994), pp. 146–159MATHCrossRefGoogle Scholar
  25. 25.
    G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, and Y. - J. Jan, A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169 (2001), pp. 708–759MATHCrossRefGoogle Scholar
  26. 26.
    H. S. Udaykumar, R. Mittal, P. Rampunggoon, and A. Khanna, A sharp interface Cartesian Grid method for simulating flows with complex moving boundaries, J. Comput. Phys., 174 (2001), pp. 345–380MATHCrossRefGoogle Scholar
  27. 27.
    S. P. van der Pijl, Computation of bubbly flows with a mass-conserving level-set method, Ph.D. thesis, Delft University of Technology, 2005Google Scholar
  28. 28.
    S. P. van der Pijl, A. Segal, C. Vuik, and P. Wesseling, A mass-conserving Level-Set method for modelling of multi-phase flows, Int. J. Numer. Meth. Fluid., 47 (2005), pp. 339–361MATHCrossRefGoogle Scholar
  29. 29.
    F. J. Vermolen and E. Javierre, Qualitative Analysis of a simple mathematical model for epidermal wound closure, in preparation, (2008)Google Scholar
  30. 30.
    F. J. Vermolen, C. Vuik, and S. van der Zwaag, The dissolution of a stoichiomet-ric second phase in ternary alloys: a numerical analysis, Mater. Sci. Eng. A, 246 (1998), pp. 93–103CrossRefGoogle Scholar
  31. 31.
    A. A. Wheeler, B. T. Murray, and R. J. Schaefer, Computation of dendrites using a phase field model, Physica D, 66 (1993), pp. 243–262MATHCrossRefGoogle Scholar
  32. 32.
    Y. Yang and H. S. Udaykumar,Sharp interface Cartesian grid method III: solidification of pure materials and binary solutions, J. Comput. Phys., 210 (2005), pp. 55–74MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    H.-K. Zhao, T. Chan, B. Merriman, and S. Osher, A variational level set approach to multiphase motion, J. Comput. Phys., 127 (1996), pp. 179–195MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • E. Javierre
  • F. J. Vermolen
  • C. Vuik
  • P. Wesseling
  • S. van der Zwaag

There are no affiliations available

Personalised recommendations