Skip to main content

One-Dimensional Shock-Capturing for High-Order Discontinuous Galerkin Methods

  • Chapter
ECCOMAS Multidisciplinary Jubilee Symposium

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 14))

Discontinuous Galerkin methods have emerged in recent years as a reasonable alternative for nonlinear conservation equations. In particular, their inherent structure (the need of a numerical flux based on a suitable approximate Riemann solver which in practice introduces some stabilization) seem to suggest that they are specially adapted to capture shocks. however, the usual numerical fluxes are not sufficient to stabilize the solution in the presence of shocks for high-order discontinuous Galerkin. Thus, slope-limiter methods, which are extensions of finite volume methods, have been proposed for high-order approximations. Here it is shown that these techniques require mesh adaption and a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. N. Arnold. An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal., 19(4):742–760, 1982

    Article  MATH  MathSciNet  Google Scholar 

  2. F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys., 131(2):267–279, 1997

    Article  MATH  MathSciNet  Google Scholar 

  3. F. Bassi and S. Rebay. Numerical evaluation of two Discontinuous Galerkin Methods for the compressible Navier-Stokes equations. Int. J. Numer. Meth. Eng., 40, 2001

    Google Scholar 

  4. C. E. Baumann and J. T. Oden. An adaptive-order discontinuous Galerkin method for the solution of the Euler equations of gas dynamics. Int. J. Numer. Meth. Eng., 47(1–3):61–73, 2000

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Biswas, K. D. Devine, and J. E. Flaherty. Parallel, adaptive finite element methods for conservation laws. Appl. Numer. Math., 14(1–3):255–283, 1994

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Burbeau, P. Sagaut, and C.-H. Bruneau. A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods. J. Comput. Phys., 169(1):111–150, 2001

    Article  MATH  MathSciNet  Google Scholar 

  7. B. Cockburn. Devising discontinuous Galerkin methods for non-linear hyperbolic conservation laws. J. Comput. Appl. Math., 128(1–2):187–204, 2001. Numerical analysis 2000, Vol. VII, Partial differential equations

    Article  MATH  MathSciNet  Google Scholar 

  8. B. Cockburn, S. Y. Lin, and C.-W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys., 84(1):90–113, 1989

    Article  MATH  MathSciNet  Google Scholar 

  9. B. Cockburn and C.-W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp., 52(186):411– 435, 1989

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Cockburn and C.-W. Shu. The Local Discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal., 35(6):2440–2463 (electronic), 1998

    Article  MATH  MathSciNet  Google Scholar 

  11. B. Cockburn and C.-W. Shu. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput., 16(3):173–261, 2001

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Donea and A. Huerta. Finite element methods for flow problems. Wiley, Chichester, 2003

    Google Scholar 

  13. S. Gottlieb, C.-W. Shu, and E. Tadmor. Strong stability-preserving high-order time discretization methods. SIAM Rev., 43(1):89–112 (electronic), 2001

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Krivodonova. Limiters for high-order discontinuous Galerkin methods. J. Comput. Phys., 226(1):879–896, 2007

    Article  MATH  MathSciNet  Google Scholar 

  15. R. J. LeVeque. Numerical methods for conservation laws. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, second edition, 1992

    Google Scholar 

  16. R. J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002

    MATH  Google Scholar 

  17. S. Osher. Riemann solvers, the entropy condition, and difference approximations. SIAM J. Numer. Anal., 21(2):217–235, 1984

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Peraire and P.-O. Persson. The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput., 30(4):1806–1824, 1988

    Article  MathSciNet  Google Scholar 

  19. P. Persson and J. Peraire. Sub-cell shock capturing for discontinuous Galerkin methods. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. AIAA-2006-0112

    Google Scholar 

  20. J. Qiu and C.-W. Shu. Runge-Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput., 26(3):907–929 (electronic), 2005

    Article  MATH  MathSciNet  Google Scholar 

  21. C.-W. Shu. Total-variation-diminishing time discretizations. SIAM J. Sci. Statist. Comput., 9(6):1073–1084, 1988

    Article  MATH  MathSciNet  Google Scholar 

  22. C.-W. Shu and S. Osher. Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys., 77(2):439–471, 1988

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Von Neumann and R. D. Richtmyer. A method for the numerical calculation of hydrody-namic shocks. J. Appl. Phys., 21:232–237, 1950

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Casoni , J. Peraire or A. Huerta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Casoni, E., Peraire, J., Huerta, A. (2009). One-Dimensional Shock-Capturing for High-Order Discontinuous Galerkin Methods. In: Eberhardsteiner, J., Hellmich, C., Mang, H.A., Périaux, J. (eds) ECCOMAS Multidisciplinary Jubilee Symposium. Computational Methods in Applied Sciences, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9231-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9231-2_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9230-5

  • Online ISBN: 978-1-4020-9231-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics