Microstructure-Oriented Modeling and Computational Remodeling of the Collagen Network in Corneo-Scleral Shells

Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 14)

Tissue adaptation and the mechanical condition within biological tissues are complex and mutually dependent phenomena. In this contribution, a computational model is presented to investigate the interaction between collagen fibril architecture and mechanical loading conditions in eye tissues. The biomechanical properties of eye tissues are derived from the single crimped fibril at the micro-scale via the collagen network of distributed fibrils at the meso-scale to the incompressible and anisotropic soft tissue at the macro-scale. Biomechanically induced remodeling of the collagen network is captured on the meso-scale by allowing for a continues reorientation of collagen fibrils. The remodeling process is introduced into an incompressible finite shell formulation. Finally, the presented approach is applied to a numerical human eye model considering the cornea and sclera. The predicted fibril morphology correlates well with experimental observations from x-ray scattering data.

Keyword

remodeling constitutive modeling crimped collagen fibrils fiber distribution sclera cornea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    PM. Pinsky, D. van der Heide, and D. Chernyak. Computational modeling of the mechanical anisotropy in the cornea and sclera. J. Cataract. Refract. Surg., 31:136–145, 2005CrossRefGoogle Scholar
  2. 2.
    A. Pandolfi and F. Manganiello. A model for the human cornea: constitutive formulation and numerical analysis. Biomech. Model. Mechanobiol., 5:237–246, 2006CrossRefGoogle Scholar
  3. 3.
    E. Lanchares, B. Calvo, J. Cristóbal, and M. Doblaré. Finite element simulation of arcuates for astigmatism correction..J. Biomech., 41:797–805, 2008CrossRefGoogle Scholar
  4. 4.
    MR. Hernandez and H. Gong. Extracellular matrix of the trabecular meshwork and optic nerve head. In R. Ritch, MB. Shields, and T. Krupin, editors, The Glaucomas: Basic Sciences, pages 213–249. Mosby-Year Book, St Louis, 1996Google Scholar
  5. 5.
    MC. Kenney, AB. Nesburn, RE. Burgeson, RJ. Butkowski, and AV. Ljubimov. Abnormalities of the extracellular matrix in keratoconus corneas. Cornea, 16:345–351, 1997CrossRefGoogle Scholar
  6. 6.
    J. Kastelic, I. Palley, and E. Baer. A structural mechanical model for tendon crimping. J. Biomech., 13:887–893, 1980CrossRefGoogle Scholar
  7. 7.
    RH. Andreo and RA. Farrell. Corneal small-angle light-scattering theory: wavy fibril models.J. Opt. Soc. Am., 72:1479–1492, 1982CrossRefGoogle Scholar
  8. 8.
    DE. Beskos and JT. Jenkins. A mechanical model for mammalian tendon. ASME J. Appl.Mech., 42:755–758, 1975Google Scholar
  9. 9.
    AD. Freed and TC. Doehring. Elastic model for crimped collagen fibrils. J. Biomech. Eng.,127:587–593, 2005CrossRefGoogle Scholar
  10. 10.
    KM. Meek and NJ. Fullwood. Corneal and scleral collagens — a microscopist's perspective.Micron, 32:261–272, 2001CrossRefGoogle Scholar
  11. 11.
    Y. Komai and T. Ushiki. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest. Ophthalmol. Vis. Sci., 32(8):2244–2258, 1991Google Scholar
  12. 12.
    A. Daxer and P. Fratzl. Collagen fibril orientation in the human corneal stroma and its implication in. Invest. Ophthalmol. Vis. Sci., 38:121–129, 1997Google Scholar
  13. 13.
    KM. Meek, T. Blamires, GF. Elliott, TJ. Gyi, and C. Nave. The organisation of collagen fibrils in the human corneal stroma: A synchrotron x-ray diffraction study. Curr. Eye. Res., 6:841–846, 1989CrossRefGoogle Scholar
  14. 14.
    H. Aghamohammadzadeh, RH. Newton, and KM. Meek. X-ray scattering used to map the preferred collagen orientation in the human cornea and limbus. Structure, 12:249–256, 2004Google Scholar
  15. 15.
    RH. Newton and KM. Meek. The integration of the corneal and limbal fibrils in the human eye. Biophys. J., 75:25082512, 1998Google Scholar
  16. 16.
    TC. Gasser, RW. Ogden, and GA. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. Roy. Soc. Interface, 3:15–35, 2006CrossRefGoogle Scholar
  17. 17.
    T. Ricken, A. Schwarza, and J. Bluhm. A triphasic model of transversely isotropic biological tissue with applications to stress and biologically induced growth. Comput. Mater. Sci.,39:124–136, 2007Google Scholar
  18. 18.
    I. Hariton, G. de Botton, TC. Gasser, and GA. Holzapfel. Stress-driven collagen fiber remodeling in arterial walls. Biomech. Model. Mechanobiol., 6(3):163–175, 2007CrossRefGoogle Scholar
  19. 19.
    RL. Gleason and JD. Humphrey. A mixture model of arterial growth and remodeling in hypertension: Altered muscle tone and tissue turnover. J. Vasc. Res., 41:352–363, 2004CrossRefGoogle Scholar
  20. 20.
    NJB. Driessen, MAJ. Cox, CVC. Bouten, and PTB Baaijens. Remodelling of the angular collagen fiber distribution in cardiovascular tissues. Biomech. Model. Mechanobiol., 7:93–103, 2008CrossRefGoogle Scholar
  21. 21.
    Y. Başar and R. Grytz. Incompressibility at large strains and finite-element implementation.Acta Mech., 168:75–101, 2004MATHCrossRefGoogle Scholar
  22. 22.
    R. Grytz and G. Meschke. Constitutive framework for crimped collagen fibrils in soft tissues.J. Mech. Behav. Biomed. Mater., 2008, (submitted)Google Scholar
  23. 23.
    P. Fratzl, K. Misof, I. Zizak, G. Rapp, H. Amenitsch, and S. Brenstorff. Fibrillar structure and mechanical properties of collagen. J. Struct. Biol., 122:119–122, 1997CrossRefGoogle Scholar
  24. 24.
    J. Liao. Mechanical and structural properties of mitral valve chordae tendineae. Ph.D. thesis,Cleveland state university, Cleveland, OH, 2003Google Scholar
  25. 25.
    KA. Hansen, JA.a Weiss, and JK. Barton. Recruitment of tendon crimp with applied tensile strain. J. Biomech. Eng., 124:72–77, 2002CrossRefGoogle Scholar
  26. 26.
    J. Diamant, A. Keller, E. Baer, M. Litt, and RGC. Arridge. Collagen: Ultrastructure and its relation to mechanical properties as a function of aging. Proc. Roy. Soc. Lond. B, 180:293–315,1972CrossRefGoogle Scholar
  27. 27.
    Y. Başar, M. Itskov, and A. Eckstein. Composite laminates: Nonlinear interlaminar stress analysis by multi-layer shell elements. Comput. Meth. Appl. Mech. Eng., 185:367–397, 2000MATHCrossRefGoogle Scholar
  28. 28.
    JC. Simo and DD. Fox. On a stress resultant geometrically exact shell model. Part i:Formulation and optimal parametrization. Comput. Meth. Appl. Mech. Eng., 72:267–304,1989MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    G. Himpel, A. Menzel, A. Kuhl, and P. Steinmann. Time-dependent fiber reorientation of transversely isotropic continua-finite element formulation and consistent linearization. Int. J.Numer. Meth. Eng., 73(10):1413–1433, 2007CrossRefMathSciNetGoogle Scholar
  30. 30.
    E. Kuhl, A. Menzel, K. Garikipati, EM. Arruda, and K. Grosh. Modeling and simulation of remodeling in soft biological tissues. In GA. Holzapfel and Ogden RW., editors, Mechanics of Biological Tissues, pages 77–89. IUTAM, Springer, Berlin/Heidelberg, 2006CrossRefGoogle Scholar
  31. 31.
    S. L-Y Woo, AS. Kobayashi, WA. Schlegel, and C. Lawrence. Nonlinear material properties of intact cornea and sclera. Exp. Eye Res., 14:29–39, 1972CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  1. 1.Institute for Structural Mechanics Ruhr-University BochumBochumGermany

Personalised recommendations