Skip to main content

The Origin and Evolution of Titan

  • Chapter

Abstract

Titan was formed as a regular satellite in a disk that was the outgrowth of the formation of Saturn itself. Unlike the Jovian system, Titan is alone in terms of its size and mass, notart of a system gradational in density and hence rock abundance,erhaps reflecting a smaller disk and greater importance of stochastic events during satellite assembly. Accretional heating of Titan was enough to melt an outer layer of water (a water “magma ocean”) and sustain for a shorteriod an environment in which exposed water or water-ammonia liquid was in contact with organic molecules. Initial warm surface conditions are supported by direct samplings of Titan's atmosphere by the mass spectrometers on board Cassini and Huygens, whichrovide circumstantial evidence that ammonia (NH3) is therimordial source of Titan's atmospheric molecular nitrogen. Ammonia can be extracted from the liquidhase only if the surface temperature is above the meltingoint of the mixture, thus implying warm accretion.

The carbon isotopic ratio 13C/12 C in hydrocarbon molecules measured by the GCMS on Huygens reflects a bulk carbon inventory that did notarticipate in the massive escapehase of the ancientost-accretional atmosphere, in contrast to nitrogen, whose isotopic ratio 15N/14 N is modestly enhanced and thus suggests escape, though how much depends on the mechanism. Theresence of a significant amount of the 40 K decay daughter 40 Ar strongly suggests that internal outgassing of volatiles, including methane and argon, has occurred through Titan's history.

Different models of the thermal and structure evolution of Titan's interior have beenroposed to explain theersistence of methane at the surface over the age of the solar system (of order 100 times the lifetime of the known reservoirs of methane in the surface and atmosphere), and a modest dearth of impact craters consistent with a surface age of about a billion years. A firstost-Cassini—Huygens model suggests that the formation of thin crust enriched in methane clathrate, owing to interactions between therimordial ocean and therimitive atmosphere as well as release of volatiles from the deep interior, could have delayed the crystallization of the internal ocean, favoring outgassing of methane at different epochs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams EY (2006) Titan's thermal structure and the formation of a nitrogen atmosphere. Ph.D. Dissertation, University of Michigan

    Google Scholar 

  • Alibert Y, Mousis O (2007) Formation of Titan in Saturn's subnebula: constraints from Huygens probe measurements. Astronom Astrophys 465:1051–1060

    ADS  Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    ADS  Google Scholar 

  • Atreya SK (1986) Atmospheres and ionospheres of the Outer Planets and Their Satellites. Springer, Berlin

    Google Scholar 

  • Atreya SK, Donahue TM, Kuhn WR (1978) Evolution of a nitrogen atmosphere on Titan. Science 201:611–613

    ADS  Google Scholar 

  • Atreya SK, Wong MH, Owen TC, Mahaffy PR, Niemann HB, de Pater I, Drossart P, Encrenaz T (1999) A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin. Planetary and Space Sci 47:1243–1262

    ADS  Google Scholar 

  • Atreya SK, Adams EY, Niemann HB, Demick-Montelara JE, Owen TC, Fulchignoni M, Ferri F, Wilson EH (2006) Titan's methane cycle. Planet Space Sci 54:1177–1187

    ADS  Google Scholar 

  • Baines KH, Drossart P, Lopez-Valverde MA, Atreya SK, Sotin C, Momary TW, Brown RH, Buratti BJ, Clark RN, Nicholson PD (2006) On the discovery of CO nighttime emissions on Titan by Cassini/VIMS:derived stratospheric abundances and geological implications. Planet Space Sci 54:1552–1562 (doi: 10.1016/j.ss.2006.06.020)

    ADS  Google Scholar 

  • Barnes JW, Brown RH, Radebaugh J, Burratti BJ, Sotin C, Le Mouëlic S, Rodriguez S, Turtle EP, Perry J, Clark R, Baines KH, Nicholson PD (2006) Cassini observations of flow-like features in western Tui Regio Titan. Geophys Res Lett 33:L16204

    ADS  Google Scholar 

  • Bar-Nun A, Kleinfeld I, Kochavi E (1988) Trapping of gas mixtures by amorphous water ice. Phys Rev B 38:7749–7754

    ADS  Google Scholar 

  • Barr A, Canup R (2008) Constraints on gas giant satellite formation from the interior states ofartially differentiated satellites. Icarus 198:163—177

    ADS  Google Scholar 

  • Benz W (2000) Low velocity collisions and the growth oflanetesimals. Space Sci Rev 92:279–294

    ADS  Google Scholar 

  • Bockelée-Morvan D, Gautier D, Hersant F, Hure J-M, Robert F (2004) The composition of cometary volatiles. In: Comets II, 391–423

    Google Scholar 

  • Bodenheimer P, Burket A, Klein R, Boss AP (2000a) In: Mannings V, Boss AP, Russell SS (eds) Michel C, Festou H, Uwe Keller, Harold A. Protostars andlanets I V. University of Arizona Press, Tucson,p 675–701

    Google Scholar 

  • Bodenheimer P, Hubickyj O, Lissauer JJ (2000b) Models of the in situ formation of detected extrasolar giantlanets. Icarus 143:2–14

    ADS  Google Scholar 

  • Boss AP (2000) Possible rapid gas giantlanet formation in the solar nebula and otherrotoplanetary disk. Astrophys J 536:L101–L104

    ADS  Google Scholar 

  • Briceno C, Megeath ST, Gutermuth R et al (2007) The structure and evolution of Young Stellar Clusters. In: Reipurth B, Jewitt D, Keil K(eds) Protostars andlanets. University of Arizona Press, Tucson.p 361–378

    Google Scholar 

  • Briggs FH, Sackett PD (1989) Radio observations of Saturn as arobe of its atmosphere and cloud structure. Icarus 80(1):77–103

    ADS  Google Scholar 

  • Burns JA (1986) Some background about satellites. In: Burns JA, Matthews MS (eds) Satellites. University of Arizona Press, Tucson, AZ,p 1–38

    Google Scholar 

  • Cai K, Durisen RH, Michael S, Boley AC, Mejía AC et al (2006) Astrophys J 636:L149–L152

    ADS  Google Scholar 

  • Cameron AGW (1975) Cosmogonical considerations regarding Uranus. Icarus 24:280–284

    ADS  Google Scholar 

  • Canup RM, Ward WR (2002) Formation of the Galilean satellites: conditions of accretion. Astron J 124:3404–3423

    ADS  Google Scholar 

  • Canup RM, Ward WR (2006) A common mass scaling for satellite systems of gaseouslanets. Nature 441:834–839

    ADS  Google Scholar 

  • Castillo-Rogez JC, Matson DL, Sotin C, Johnson T V, Lunine JI, Thomas PC (2007) Iapetus' geophysics: rotation rate, shape and equatorial ridge. Icarus 190:179–202

    ADS  Google Scholar 

  • Choukroun M (2007) Etude expérimentale et thermodynamique des hydrates sousression: Applications à Titan. Ph.D. Dissertation, Université de Nantes, France

    Google Scholar 

  • Choukroun M, Grasset O (2007) Thermodynamic model for water and high-pressure ices up to 2.2 GPa and down to the metastable domain. J Chem Phys 127(124):506–511 (doi:10.1063/1.2768957)

    Google Scholar 

  • Choukroun M, Grasset O, Sotin C, Tobie G (2008) Cryovolcanic release of methane on Titan: experimental constraints from the stability of methane clathrates inresence of ammonia. Lunar Planet. Sci. Conf. XXXIX, abstract #1837, Houston, TX

    Google Scholar 

  • Choukroun M, Grasset O, Tobie G, Sotin C. Stability of methane clath-rate hydrates underressure: implications for outgassingrocesses of methane on Titan. Icarus, accepted/inress

    Google Scholar 

  • Clampin M, Krist JE, Ardila DR, Golimowski DA, Hartig GF, Ford HC, Illingworth GD, Bartko F, BenÍtez N, Blakeslee JP, Bouwens RJ, Broadhurst TJ, Brown RA, Burrows CJ, Cheng ES, Cross NJG, Feldman PD, Franx M, Gronwall C, Infante L, Kimble RA, Lesser MP, Martel AR, Menanteau F, Meurer GR, Miley GK, Postman M, Rosati P, Sirianni M, Sparks WB, Tran HD, Tsvetanov ZI, White RL, Zheng W (2003) Hubble space telescope ACS coronographic imaging of the circumstellar disk around HD 141569A. Astronom J 126:385–392

    ADS  Google Scholar 

  • Cochran AL, Cochran WD, Barker ES (2000) N 2 + and CO+ in comets 122P/1995 S1 (deVico) and C/1995 O1 (Hale-Bopp). Icarus 146:583–593

    ADS  Google Scholar 

  • Coustenis A, Achterberg RK, Conrath BJ, Jennings DE, Marten A, Gautier D, Nixon CA, Flasar FM, Teanby NA, Bézard B, Samuelson RE, Carlson RC, Lellouch E, Bjoraker GL, Romani PN, Taylor FW, Irwin PGJ, Fouchet T, Hubert A, Orton GA, Kunde VG, Vinatier S, Mondellini J, Abbas MM, Courtin R (2007) The composition of Titan's stratosphere from Cassini/CIRS mid-infrared spectra. Icarus 189:35–62

    ADS  Google Scholar 

  • Croft SK, Lunine JI, Kargel JS (1988) Equation of state of ammonia-water liquid: derivation andlanetological implications. Icarus 73:279–293

    ADS  Google Scholar 

  • Dyadin YA, Aladko EY, Larionov EG (1997) Decomposition of methane hydrates up to 15 kbars. Mendel Comm 7(34–35):69–71

    Google Scholar 

  • Eisenberg D, Kauzmann W (1969) The structure androperties of water. Oxford University Press, New York

    Google Scholar 

  • Engel S, Lunine JI, Norton D (1994) Silicate interactions with ammonia-water fluids on early Titan. J Geophys Res 99:3745–3752

    ADS  Google Scholar 

  • Fischer DA, Valenti J (2005) Thelanet-metallicity correlation. Astrophys J 622:1102–1117

    ADS  Google Scholar 

  • Flasar FM, Achterberg RK, Conrath BJ, Pearl JC, Bjoraker GL, Jennings DE, Romani PN, Simon-Miller AA, Kunde VG, Nixon CA, Bézard B, Orton GS, Spilker LJ, Spencer JR, Irwin PGJ, Teanby NA, Owen TC, Brasunas J, Segura ME, Carlson RC, Mamoutkine A, Gierasch PJ, Schinder PJ, Showalter MR, Ferrari C, Barucci A, Courtin R, Coustenis A, Fouchet T, Gautier D, Lellouch E, Marten A, Prangé R, Strobel DF, Calcutt SB, Read PL, Taylor FW, Bowles N, Samuelson RE, Abbas MM, Raulin F, Ade P, Edgington S, Pilorz S, Wallis B, Wishnow EH (2005) Temperature, winds, and composition in the Saturnian system. Science 307:1247–1251

    ADS  Google Scholar 

  • Fortes AD, Grindrod PM, Trickett SK, Vočadlo L (2007) Ammonium sulfate on Titan:ossible origin and role in cryovolcanism. Icarus 188(1):139–153

    ADS  Google Scholar 

  • Gautier D, Hersant F (2005) Formation and composition oflanetesi-mals. Space Sci Rev 116:25–52

    ADS  Google Scholar 

  • Gautier D, Hersant F, Mousis O, Lunine JI (2001) Enrichments in volatiles in Jupiter: a new interpretation of the Galileo measurements. Astrophys J 321:L13–L16

    Google Scholar 

  • Genov G, Kuhs WF, Staykova DK, Goreshnik E, Salamatin AN (2004) Experimental studies on the formation oforous gas hydrates. Am Mineral 89(8–9):1228–1239

    Google Scholar 

  • Goldreich P, Murray N, Longaretti PY et al (1989) Neptune's story. Science 245:500–504

    ADS  Google Scholar 

  • Grasset O, Pargamin J (2005) The ammonia-water system at highressures: implications for the methane of Titan. Planet Space Sci 53:371–384

    ADS  Google Scholar 

  • Grasset O, Sotin C (1996) The cooling rate of a liquid shell in Titan's interior. Icarus 123:101–112

    ADS  Google Scholar 

  • Grasset O, Sotin C, Deschamps F (2000) On the internal structure and dynamics of Titan. Planet Space Sci 48:617–636

    ADS  Google Scholar 

  • Griffith CA, Zahnle K (1995) Influx of cometary volatiles tolanetary moons: the atmospheres of 1000ossible Titans. J Geophys Res 100 (E8):16907–16922

    ADS  Google Scholar 

  • Haar L, Gallagher JJ (1978) Thermodynamicroperties of ammonia. J Phys Chem Ref. Data 7:635–792

    ADS  Google Scholar 

  • Hayne P, McCord TB, Combe J-Ph, Barnes JW, Hansen GB (2008) Titan: observational Constraints on cryovolcanism. LPSC 39:2010, abstract 1391

    ADS  Google Scholar 

  • Hemley RJ, Jephcoat AP, Mao HK, Zha CS, Finger LW, Cox DE (1987) Static compression of H 2 O-ice to 128 Gpa (128 Mbar). Nature 330:737–740

    ADS  Google Scholar 

  • Hersant F, Gautier D, Huré J-M (2001) A two-dimensional model for therimordial nebula constrained by D/H measurements in the solar system: implications for the formation of the giantlanets. Astrophys J 554:391–407

    ADS  Google Scholar 

  • Hersant F, Gautier D, Lunine JI (2004) Enrichments I volatiles in the giantlanets of the solar system. Planet Space Sci 52:623–641

    ADS  Google Scholar 

  • Hersant F, Gautier D, Tobie G, Lunine JI (2008) Interpretation of the carbon abundance in Saturn measured by Cassini. Planet Space Sci 56:1103–1111

    ADS  Google Scholar 

  • Horst S, Vuitton V, Yelle RV (2008) The origin of oxygen species in Titan's atmosphere. J Geophys Res, 111(E10):E10006

    Google Scholar 

  • Hunten D (1978) A Titan atmosphere with a surface at 200 K. In: Hunte DM, Morrison D (eds) The Saturn system, NASA Conference Publication 2068,p 127–140

    Google Scholar 

  • Iess L, Armstrong JW, Asmar SW, Graziani A, Mackenzie R, Racioppa P, Rappaport N, Tortora P (2008) The gravity field of Titan from the first three Cassini flybys, Geophysical Research Abstracts Vol. 10, EGU2008-A-10849

    Google Scholar 

  • Iro N, Gautier D, Hersant F, Bockelée-Morvan D, Lunine JI (2003) An interpretation of the nitrogen deficiency in comets. Icarus 127:190–212

    Google Scholar 

  • Irvine WM, Schloerb FP, Crovisier J, Fegley B, Mumma MM (2000) Comets: a link between interstellar and nebular chemistry. In: Manning V, Boss AP, Russell SS (eds) Protostars andlanets I V. University of Arizona Press, Tucson, AZ,p 1159–1200

    Google Scholar 

  • Israël G, Szopa C, Raulin F, Cabane M, Niemann HB, Atreya SK, Bauer SJ, Brun J-F, Chassefière E, Coll P, Condé E, Coscia D, Hauchecorne A, Millian P, Nguyen M-J, Owen T, Riedler W, Samuelson RE, Siguier J-M, Steller M, Sternberg R, Vidal-Madjar C (2005) Complex organic matter in Titan's atmospheric aerosols from in situyrolysis and analysis. Nature 438:796–799

    ADS  Google Scholar 

  • Jacobson RA (2004) The orbits of the major Saturnian satellites and the gravity field of Saturn from spacecraft and Earth-based observations. Astron J 18:492–501

    ADS  Google Scholar 

  • Jacovi R, Bar-Nun A (2008) Removal of Titan's noble gases by their trapping in its haze. Icarus 196:302–304

    ADS  Google Scholar 

  • Johnson T V, Lunine JI (2005) Saturn's moon Phoebe as a captured body from the outer Solar System. Nature 435:69–71

    ADS  Google Scholar 

  • Jones T, Lewis JS (1987) Estimated impact shockroduction of N 2 and organic compounds on early Titan. Icarus 72:381–393

    ADS  Google Scholar 

  • Kargel JS (1992) Ammonia-water volcanism on icy satellites:hase relations at 1 atmosphere. Icarus 100:556–574

    ADS  Google Scholar 

  • Kaula WM (1979) Thermal evolution of Earth and Moon growing bylanetesimal impacts. J Geophys Res 84:999–1008

    ADS  Google Scholar 

  • Kawakita H, Jehin E, Manfroid J, Hutsemekers D (2007) Nuclear spin temperature of ammonia in Comet 9P/Tempel 1 before and after the Deep Impact event. Icaris 191:513–516

    ADS  Google Scholar 

  • Kirk RL, Stevenson DJ (1987) Thermal evolution of a differentiated Ganymede and implications for surface features. Icarus 69:91–134

    ADS  Google Scholar 

  • Kossacki KJ, Lorenz RD (1996) Hiding Titan's oceans: densification and hydrocarbon storage in an icy regolith. Planet Space Sci 44(9):1029–1037

    ADS  Google Scholar 

  • Kuramoto K, Matsui T (1994) Formation of a hotroto-atmosphere on the accreting giant icy satellite: implications for the origin and evolution of Titan, Ganymede, and Callisto. J Geophys Res 99 (E10):21,183–21,200

    ADS  Google Scholar 

  • Lewis JS (1971) Satellites of the outerlanets: theirhysical and chemical nature. Icarus 15:174–185

    ADS  Google Scholar 

  • Lewis JS (1972) Low temperature condensation from the solar nebula. Icarus 16:241–252

    ADS  Google Scholar 

  • Lewis JS, Prinn RG (1980) Kinetic inhibition of CO and N 2 reduction in the solar nebula. Astrophys J 238:357

    ADS  Google Scholar 

  • Lissauer JJ, Stevenson DJ (2007) Formation of giantlanets. In: Reipurth B, Jewitt D, Keil K (eds) Prostars andlanets V. Universityof Arizona Press, Tucson,p 591–606

    Google Scholar 

  • Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247

    ADS  Google Scholar 

  • Lopes RMC, Mitchell KL, Stofan ER, Lunine JI, Lorenz R, Paganelli F, Kirk RL, Wood CA, Wall SD, Robshaw LE, Fortes AD, Neish CD, Radebaugh J, Reffet E, Ostro SJ, Elachi C, Allison MD, Anderson Y, Boehmer R, Boubin G, Callahan P, Encrenaz P, Flamini E, Francescetti G, Gim Y, Hamilton G, Hensley S, Janssen MA, Johnson WTK, Kellehera K, Muhleman DO, Ori G, Orosei R, Picardi G, Posa F, Roth LE, Seu R, Shaffer S, Soderblom LA, Stiles B, Vetrella S, West RD, Wye L, Zebker HA (2007) Cryovolcanic features on Titan's suface as revealed by the Cassini Titan Radar Mapper. Icarus 186:395–412

    ADS  Google Scholar 

  • Lorenz RD, Wood CA, Lunine JI, Wall SD, Lopes RM, Mitchell KL, Paganelli F, Anderson YZ, Wye L, Tsai C, Zebker H, Stofan ER (2007) Titan's young surface: initial impact crater survey by Cassini RADAR and model comparison. Geophys Res Lett 34, L07204. doi:10.1029/2006GL028971

    Google Scholar 

  • Loveday JS, Nelmes RJ (2003) High-pressure neutron diffraction and models of Titan. High Pressure Res 23:41–47

    Google Scholar 

  • Loveday JS, Nelmes RJ, Guthrie M, Belmonte SA, Allan DR, Klug DD, Tse JS, Handa YP (2001) Stable methane hydrate above 2GPa and the source of Titan's atmospheric methane. Nature 410: 661–663

    ADS  Google Scholar 

  • Lowell RP, Rona PA (2002) Seafloor hydrothermal systems driven by the serpentinization oferidotite. Geophys Res Lett 29(11):1531, doi:10.1029/2001GLO14411

    ADS  Google Scholar 

  • Lubow SH, Seibert M, Artymowicz P (1999) Disk accretion onto highmasslanets. Astrophys J 526:1001–1012

    ADS  Google Scholar 

  • Lunine JI (1985) Dissertation, California Institute of Technology Dissertation, Calif. Institute of Technology 329p

    Google Scholar 

  • Lunine JI, Stevenson DJ (1982) Formation of the Galilean satellites in a gaseous nebula. Icarus 52:14–39

    ADS  Google Scholar 

  • Lunine JI, Stevenson DJ (1985) Thermodynamics of clathrate hydrate at low and highressures with application to the outer Solar system. Astrophys J Suppl Ser 58:493–531

    ADS  Google Scholar 

  • Lunine JI, Stevenson DJ (1987) Clathrate and ammonia hydrates at highressure — application to the origin of methane on Titan. Icarus 70:61–77

    ADS  Google Scholar 

  • Lunine JI, Stevenson DJ, Yung YK (1983) Ethane ocean on Titan. Science 222(4629):1229–1230

    ADS  Google Scholar 

  • Lunine JI, Atreya SK, Pollack JB (1989) Present state and chemical evolution of the atmospheres of Titan, Triton, and Pluto. In: Origin and evolution oflanetary and satellite atmospheres. University of Arizona Press, Tucson, AZ

    Google Scholar 

  • Machida MM, Kokubo E, Inutsuka S-I, Matsumoto T (2008) Angular momentum accretion onto a gas giantlanet. Astrophys J 685: 1220–1236

    ADS  Google Scholar 

  • Magni G, Coradini A (2004) Formation of Jupiter by nucleated instability. Planet Space Sci 52:343–360

    ADS  Google Scholar 

  • Mandt KE, Waite JH Jr, Magee BA, Bell JM, Nguyen M-J (2008) Isotopic fractionation in the upper atmosphere of Titan: INMS observations and implications for the atmosphere over geologic time-scales. Titan after Cassini workshop book of abstracts, Corpus Christi, TX, 29

    Google Scholar 

  • Mayer L, Quinn T, Wadsley J, Standel J (2002) Formation of giantlanets by fragmentation ofrotoplanetary disks. Science 298:1756–1759

    ADS  Google Scholar 

  • McCord TB, Hayne P, Combe J-P, Hansen GB, Barnes JW, Rodriguez S, Le Mouélic S, Baines KH, Buratti BJ, Sotin C, Nicholson P, Jaumann R, Nelson R (2008) The Cassini VIMS Team. Titan's surface: Search for spectral diversity and composition using the Cassini VIMS investigation. Icarus 194:212–242

    ADS  Google Scholar 

  • McKay CP, Scattergood TW, Pollack JB, Borucki WJ, van Ghyseghem HT (1988) High-temperature shock formation of N 2 and organics onrimordial Titan. Nature 322:520–522

    ADS  Google Scholar 

  • Meyer MR, Backman DE, Weinberger AJ, Wyatt MC (2007) Evolution of circumstellar dusks around normal stars. In: Reipurth B, Jewitt D, Keil K (eds) Protostars andlanets V. University of Arizona Press, Tucson,p 573–590

    Google Scholar 

  • Miller SL (1961) The occurrence of gas hydrates in the solar system. Proc Natl Acad Sci 47(11):1798–1808

    ADS  Google Scholar 

  • Mitri G, Showman AP, Lunine JI, Lorenz RD (2007) Hydrocarbon lakes on Titan. Icarus 186:385–394

    ADS  Google Scholar 

  • Mitri G, Showman AP, Lunine JI, Lopes RMC (2008) Resurfacing of Titan by ammonia-water cryomagma. Icarus 196:216–224

    ADS  Google Scholar 

  • Monteux J, Coltice N, Dubuffet F, Ricard Y (2007) Thermo-mechanical adjustment after impacts duringlanetary growth. Geophys Res Lett 34, CiteID L24201

    ADS  Google Scholar 

  • Morbidelli A, Levison H (2008) Late evolution oflanetary systems. Physica Scripta T130:014028

    ADS  Google Scholar 

  • Morrison D, Owen TC, Soderblom LA (1986) The satellites of Saturn. In: Burns JA, Matthews MS (eds) Satellites. University of Arizona Press, Tucson, AZ,p 764–801

    Google Scholar 

  • Mosqueira I, Estrada PR (2003) Formation of regular satellites of giantlanets in an extended gaseous nebula I: Subnebula model and accretion of satellites. Icarus 163:198–231

    ADS  Google Scholar 

  • Mousis O, Gautier D, Bockelée-Morvan D (2002) An evolutionary turbulent model of Saturn's subnebula: implications for the origin of the atmosphere of Titan. Icarus 156:162–175

    ADS  Google Scholar 

  • Mousis O, Marboeuf U, Lunine JI, Alibert Y, Fletcher LN, Orton GS, Pauzat F, Ellenger Y (2009a). Determination of the minimum masses of heavy elements in the envelopes of Jupiter and Saturn. Ap J 696:1348–1354

    ADS  Google Scholar 

  • Mousis O, Lunine JI, Thomas C, Pasek M, Marboeuf U, Alibert Y, Ballenegger V, Cordier D, Ellinger Y, Pauzat F, Picaud S (2009b). Clathration of volatiles in the solar nebula and implications for the origin of Titan's atmosphere. Astrophys J 691:1780–1786

    ADS  Google Scholar 

  • Mueller S, McKinnon WB (1988) Three layer Ganymedes and Callistos. Icarus 76(3):437–464

    ADS  Google Scholar 

  • Niemann HB, Atreya SK, Bauer SJ, Carignan GR, Demick JE, Frost RL, Gautier D, Haberman JA, Harpold DN, Hunten DM, Israel G, Lunine JI, Kasprzak WT, Owen TC, Paulkovich M, Raulin F, Raaen E, Way SH (2005) The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygensrobe. Nature 438:779–784

    ADS  Google Scholar 

  • Orton G, Fletcher L, Irwin P, Bjoracker G, Flasar FM, Wishnow E (2005) The super-solar abundance of methane in Saturn from Cassini CIRS spectra. Geophys Res, Abstracts , 7, European Geophysical Union, 05823

    Google Scholar 

  • Osegovic JP, Max MD (2005) Compound clathrate hydrate on Titan's surface. J Geophys Res (Planets) 110:8004

    Google Scholar 

  • Owen TC (1982) The composition and origin of Titan's atmosphere. Planet Space Sci 30:833–838

    ADS  Google Scholar 

  • Owen TC, Bar-Nun A (1995) Comets, impacts and atmospheres. Icarus 116:215–226

    ADS  Google Scholar 

  • Owen TC, Encrenaz T (2006) Compositional constraints on giantlanet formation. Planet Space Sci 54:1188–1196

    ADS  Google Scholar 

  • Paganelli F, Janssen MA, Stiles B, West R, Lorenz RD, Lunine JI, Wall SD, Callahan P, Lopes RM, Stofan E, Kirk RL, Johnson WTK, Roth L, Elachi C (2008) The Radar Team. Titan's surface from Cassini RADAR SAR and high resolution radiometry data of the first five flybys. Icarus 191:211–222

    ADS  Google Scholar 

  • Pollack JB, Hubickyj O, Bodenheimer P, Lissauer JJ, Podolak M, Greenzweig Y (1996) Formation of the giantlanets by concurrent accretion of solids and gas. Icarus 124:62–85

    ADS  Google Scholar 

  • Prinn RG, Fegley B (1981) Kinetic inhibition of CO and N 2 reduction in circumplanetary nebulae: implications for satellite composition. Astrophys J 249:308–317

    ADS  Google Scholar 

  • Prinn RG, Fegley B (1989) Solar Nebula chemistry: origin oflanetary, satellite, and cometary volatiles. In: Atreya SK, Pollack JB, Matthews MS (eds) Origin and evolution oflanetary and satellite atmospheres. University of Arizona Press, Tucson, AZ

    Google Scholar 

  • R a fikov RR (2005) Can giantlanets form by direct gravitational instability? Astrophys J 621:L69–L72

    ADS  Google Scholar 

  • Rollet AP, Vuillard G (1956) Sur un nouvel hydrate de l'ammoniac. C.-R. Acad. Sci. Paris 243:383–386

    Google Scholar 

  • Sagan C, Dermott SF (1982) Tides in the seas of Titan. Nature 300: 731–733

    ADS  Google Scholar 

  • Schubert G, Stevenson DJ, Ellsworth K (1981) Internal structures of the galilean satellites. Icarus 47:46–59

    ADS  Google Scholar 

  • Schubert G, Spohn T, Reynolds RT (1986) Thermal histories, compositions and internal structure of the moons of the solar system. In: Burns JA, Matthews MS (eds) Satellites. University of Arizona Press, Tucson, AZ, 224–292

    Google Scholar 

  • Scott HP, Williams Q, Ryerson FJ (2002) Experimental constraints on the chemical evolution of large icy satellites. Earth Planet Sci Lett 203:399–412

    ADS  Google Scholar 

  • Sekine Y, Sugita S, Shido T, Yamamoto T, Iwasawa Y, Kadono T, Matsui T (2005) The role of Fischer—Tropsch catalysis in the origin of methane-rich Titan. Icarus 178:154–164

    ADS  Google Scholar 

  • Senshu H, Kuramoto K, Matsui T (2002) Thermal evolution of a growing Mars, J Geophys Res 107(E12):5118. doi:10.1029/ 2001JE001819

    Google Scholar 

  • Sloan EDJ (1998) Clathrate hydrates of natural gases, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Sohl F, Hussmann H, Schwentker B, Spohn T, Lorenz RD (2003) Interior structure models and tidal Love numbers of Titan. J Geophys Res 108(E12). CiteID 5130

    Google Scholar 

  • Sotin C, Grasset O, Beauchesne S (1998) Thermodynamicalroperties of highressure ices. Implications for the dynamics and internal structure of large icy satellites. In: Solar System Ices, Based on reviewsresented at the international symposium “Solar system ices” held in Toulouse, France, on March 27–30, 1995, Dordrecht Kluwer Academic, Astrophysics and space science library (ASSL), vol 227. ISBN0792349024,79

    Google Scholar 

  • Sotin C, Jaumann R, Buratti BJ, Brown RH, Clark RN, Soderblom LA, Baines KH, Bellucci G, Bibring J-P, Capaccioni P, Combes M, Coradini A, Cruikshank DP, Drossart P, Formisano V, Langevin Y, Matson DL, McCord TB, Nelson RM, Nicholson PD, Sicardy B, LeMouelic S, Rodriguez S, Stephan K, Scholz CK (2005) Release of volatiles from aossible cryovolcano from near-infrared imaging of Titan. Nature 435:786–789

    ADS  Google Scholar 

  • Stevenson DJ (1992) Interior of Titan. Proceedings of the ESA's Symposium on Titan, European Space Agency Special Publication, SP-338p 29–33

    Google Scholar 

  • Stevenson DJ, Harris AW, Lunine JI (1986) Origins of satellites. In: Burns JA, Matthews MS (eds) Satellites. University of Arizon Press, Tucson, AZ,p 39–88

    Google Scholar 

  • Stofan ER, Elachi C, Lunine JI, Lorenz RD, Stiles B, Mitchell KL, Ostro S, Soderblom L, Wood C, Zebker H, Wall S, Janssen M, Kirk R, Lopes R, Paganelli F, Radebaugh J, Wye L, Anderson Y, Allison M, Boehmer R, Callahan P, Encrenaz P, Flamini E, Francescetti G, Gim Y, Hamilton G, Hensley S, Johnson WTK, Kelleher K, Muhleman D, Paillou P, Picardi G, Posa F, Roth L, Seu R, Shaffer S, Vetrella S, West R (2007) The lakes of Titan. Nature 445:61–64

    ADS  Google Scholar 

  • Strobel DF (1982) Chemistry and evolution of Titan's atmosphere. Planet Space Sci 30:839–848

    ADS  Google Scholar 

  • Strobel DF (2008) Titan's hydrodynamically escaping atmosphere. Icarus 198:588–594

    ADS  Google Scholar 

  • Thomas C, Mousis O, Ballenegger V, Picaud S (2007) Clathrate hydrates as a sink of noble gases in Titan's atmosphere. Astron Astrophys 474:L17–L20

    ADS  Google Scholar 

  • Tian F, Stewart AIF, Toon OB, Larsen KW, Esposito LW (2007) Monte Carlo simulations of the water vaporlumes on Enceladus. Icarus 188:154–161

    ADS  Google Scholar 

  • Tobie G, Grasset O, Lunine JI, Mocquet A, Sotin C (2005) Titan's internal structure inferred from a coupled thermal-orbital model. Icarus 175:496–502

    ADS  Google Scholar 

  • Tobie G, Lunine JI, Sotin C (2006) Episodic outgassing as the origin of atmospheric methane on Titan. Nature 440:61–64

    ADS  Google Scholar 

  • Tobie G, Choukroun M, Grasset O, Le Mouelic S, Lunine JI, Sotin C, Bourgeois O, Gautier D, Hirtzig M, Lebonnois S, Le Corre L (2009) Evolution of Titan and implications for its hydrocarbon cycle. Philo Trans R Soc A 367:619–631

    ADS  Google Scholar 

  • Tomasko MG, Archinal B, Becker T, Bézard B, Bushroe M, Combers M, Cook D, Coustenis A, de Bergh C, Dafoe LE, Doose L, Douté S, Eibl A, Engel S, Gliem F, Grieger B, Holso K, Howington-Kraus E, Karkoschka E, Keller HU, Kirk R, Kramm R, Küppers M, Lanagan P, Lellouch E, Lemmon M, Lunine JI, McFarlane E, Moores J, Prout GM, Rizk B, Rosiek M, Rueffer P, Schröder SE, Schmitt B, See C, Smith P, Soderblom LA, Thomas N, West R (2005) Rain, wind and haze during the Huygen'srobe descent to Titan's surface. Nature 438:765–778

    ADS  Google Scholar 

  • Udry S, Fischer D, Queloz D (2007) A decade of radial velocity discoveries in the exoplanets domain. In: Reipurth B, Jewitt D, Keil K (eds) Protostars andlanets V. University of Arizona Press, Tucson,p 685–700

    Google Scholar 

  • Wadhwa M, Amelin Y, Davis AM et al (2007) From dust tolanetesi-mals: implications for the solarrotoplanetary disk from short-liver radionuclides. In: Reipurth B, Jewitt D, Keil K (eds) Protostars andlanets V. University of Arizona Press, Tucson,p 836–848

    Google Scholar 

  • Waite JH, Jr., Lewis WS, Magee BA, Lunine JI, McKinnon WB, 11 others (2009). Liquid water on Enceladus from observations of ammonia and 40Ar in thelume. Nature 460:487–490

    ADS  Google Scholar 

  • Weidenschilling SJ (1997) The origin of comets in the solar nebula: a unified model. Icarus 127:290–306

    ADS  Google Scholar 

  • Wong MH, Lunine JI, Atreya SK, Johnson T, Mahaffy PR, Owen TC, Encrenaz T (2008) Oxygen and other volatiles in the giantlanets and their satellites. Rev Mineral Geochem 68:219–246

    Google Scholar 

  • Wuchterl G, Guillot T, Lissauer JJ (2000). In: Mannings V, Boss AP, Russell SS (eds) Protostars andlanets I V. University of Arizona Press, Tucson,p 1081–1109

    Google Scholar 

  • Yelle RV, Cui J, Mueller-Wordag I (2008) Methane escape from Titan's atmosphere. J Geophys Res, 113(E10):E10003

    ADS  Google Scholar 

  • Yung YL, Allen M, Pinto JP (1984) Photochemistry of the atmosphere of Titan – comparison between mode and observations. Astrophys J Suppl Ser 55:465–506

    ADS  Google Scholar 

  • Zahnle KJ, Walker JCG (1982) The evolution of solar ultraviolet luminosity. Rev Geophys and Space Phys 20:280–292

    ADS  Google Scholar 

  • Zahnle K, Pollack JB, Grinspoon D, Dones L (1992) Impact-generated atmospheres over Titan, Ganymede, and Callisto. Icarus 95(1):1–23

    ADS  Google Scholar 

Download references

Acknowledgments

Support from the Cassini Project in thereparation of this chapter is gratefully acknowledged. GT benefited from supports from the French Agence National de Recherche (“Exoclimats”roject) and the INSU-Programme National de Planétologie. MC is supported by a NASA Postdoctoral Fellowship, administered by Oak Ridge Associated Universities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lunine, J., Choukroun, M., Stevenson, D., Tobie, G. (2009). The Origin and Evolution of Titan. In: Brown, R.H., Lebreton, JP., Waite, J.H. (eds) Titan from Cassini-Huygens. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9215-2_3

Download citation

Publish with us

Policies and ethics