The Origin and Evolution of Titan

  • Jonathan Lunine
  • Mathieu Choukroun
  • David Stevenson
  • Gabriel Tobie

Abstract

Titan was formed as a regular satellite in a disk that was the outgrowth of the formation of Saturn itself. Unlike the Jovian system, Titan is alone in terms of its size and mass, notart of a system gradational in density and hence rock abundance,erhaps reflecting a smaller disk and greater importance of stochastic events during satellite assembly. Accretional heating of Titan was enough to melt an outer layer of water (a water “magma ocean”) and sustain for a shorteriod an environment in which exposed water or water-ammonia liquid was in contact with organic molecules. Initial warm surface conditions are supported by direct samplings of Titan's atmosphere by the mass spectrometers on board Cassini and Huygens, whichrovide circumstantial evidence that ammonia (NH3) is therimordial source of Titan's atmospheric molecular nitrogen. Ammonia can be extracted from the liquidhase only if the surface temperature is above the meltingoint of the mixture, thus implying warm accretion.

The carbon isotopic ratio 13C/12 C in hydrocarbon molecules measured by the GCMS on Huygens reflects a bulk carbon inventory that did notarticipate in the massive escapehase of the ancientost-accretional atmosphere, in contrast to nitrogen, whose isotopic ratio 15N/14 N is modestly enhanced and thus suggests escape, though how much depends on the mechanism. Theresence of a significant amount of the 40 K decay daughter 40 Ar strongly suggests that internal outgassing of volatiles, including methane and argon, has occurred through Titan's history.

Different models of the thermal and structure evolution of Titan's interior have beenroposed to explain theersistence of methane at the surface over the age of the solar system (of order 100 times the lifetime of the known reservoirs of methane in the surface and atmosphere), and a modest dearth of impact craters consistent with a surface age of about a billion years. A firstost-Cassini—Huygens model suggests that the formation of thin crust enriched in methane clathrate, owing to interactions between therimordial ocean and therimitive atmosphere as well as release of volatiles from the deep interior, could have delayed the crystallization of the internal ocean, favoring outgassing of methane at different epochs.

Keywords

Crystallization Dust Hydrate Convection Silicate 

Notes

Acknowledgments

Support from the Cassini Project in thereparation of this chapter is gratefully acknowledged. GT benefited from supports from the French Agence National de Recherche (“Exoclimats”roject) and the INSU-Programme National de Planétologie. MC is supported by a NASA Postdoctoral Fellowship, administered by Oak Ridge Associated Universities.

References

  1. Adams EY (2006) Titan's thermal structure and the formation of a nitrogen atmosphere. Ph.D. Dissertation, University of MichiganGoogle Scholar
  2. Alibert Y, Mousis O (2007) Formation of Titan in Saturn's subnebula: constraints from Huygens probe measurements. Astronom Astrophys 465:1051–1060ADSGoogle Scholar
  3. Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214ADSGoogle Scholar
  4. Atreya SK (1986) Atmospheres and ionospheres of the Outer Planets and Their Satellites. Springer, BerlinGoogle Scholar
  5. Atreya SK, Donahue TM, Kuhn WR (1978) Evolution of a nitrogen atmosphere on Titan. Science 201:611–613ADSGoogle Scholar
  6. Atreya SK, Wong MH, Owen TC, Mahaffy PR, Niemann HB, de Pater I, Drossart P, Encrenaz T (1999) A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing, and origin. Planetary and Space Sci 47:1243–1262ADSGoogle Scholar
  7. Atreya SK, Adams EY, Niemann HB, Demick-Montelara JE, Owen TC, Fulchignoni M, Ferri F, Wilson EH (2006) Titan's methane cycle. Planet Space Sci 54:1177–1187ADSGoogle Scholar
  8. Baines KH, Drossart P, Lopez-Valverde MA, Atreya SK, Sotin C, Momary TW, Brown RH, Buratti BJ, Clark RN, Nicholson PD (2006) On the discovery of CO nighttime emissions on Titan by Cassini/VIMS:derived stratospheric abundances and geological implications. Planet Space Sci 54:1552–1562 (doi: 10.1016/j.ss.2006.06.020)ADSGoogle Scholar
  9. Barnes JW, Brown RH, Radebaugh J, Burratti BJ, Sotin C, Le Mouëlic S, Rodriguez S, Turtle EP, Perry J, Clark R, Baines KH, Nicholson PD (2006) Cassini observations of flow-like features in western Tui Regio Titan. Geophys Res Lett 33:L16204ADSGoogle Scholar
  10. Bar-Nun A, Kleinfeld I, Kochavi E (1988) Trapping of gas mixtures by amorphous water ice. Phys Rev B 38:7749–7754ADSGoogle Scholar
  11. Barr A, Canup R (2008) Constraints on gas giant satellite formation from the interior states ofartially differentiated satellites. Icarus 198:163—177ADSGoogle Scholar
  12. Benz W (2000) Low velocity collisions and the growth oflanetesimals. Space Sci Rev 92:279–294ADSGoogle Scholar
  13. Bockelée-Morvan D, Gautier D, Hersant F, Hure J-M, Robert F (2004) The composition of cometary volatiles. In: Comets II, 391–423Google Scholar
  14. Bodenheimer P, Burket A, Klein R, Boss AP (2000a) In: Mannings V, Boss AP, Russell SS (eds) Michel C, Festou H, Uwe Keller, Harold A. Protostars andlanets I V. University of Arizona Press, Tucson,p 675–701Google Scholar
  15. Bodenheimer P, Hubickyj O, Lissauer JJ (2000b) Models of the in situ formation of detected extrasolar giantlanets. Icarus 143:2–14ADSGoogle Scholar
  16. Boss AP (2000) Possible rapid gas giantlanet formation in the solar nebula and otherrotoplanetary disk. Astrophys J 536:L101–L104ADSGoogle Scholar
  17. Briceno C, Megeath ST, Gutermuth R et al (2007) The structure and evolution of Young Stellar Clusters. In: Reipurth B, Jewitt D, Keil K(eds) Protostars andlanets. University of Arizona Press, Tucson.p 361–378Google Scholar
  18. Briggs FH, Sackett PD (1989) Radio observations of Saturn as arobe of its atmosphere and cloud structure. Icarus 80(1):77–103ADSGoogle Scholar
  19. Burns JA (1986) Some background about satellites. In: Burns JA, Matthews MS (eds) Satellites. University of Arizona Press, Tucson, AZ,p 1–38Google Scholar
  20. Cai K, Durisen RH, Michael S, Boley AC, Mejía AC et al (2006) Astrophys J 636:L149–L152ADSGoogle Scholar
  21. Cameron AGW (1975) Cosmogonical considerations regarding Uranus. Icarus 24:280–284ADSGoogle Scholar
  22. Canup RM, Ward WR (2002) Formation of the Galilean satellites: conditions of accretion. Astron J 124:3404–3423ADSGoogle Scholar
  23. Canup RM, Ward WR (2006) A common mass scaling for satellite systems of gaseouslanets. Nature 441:834–839ADSGoogle Scholar
  24. Castillo-Rogez JC, Matson DL, Sotin C, Johnson T V, Lunine JI, Thomas PC (2007) Iapetus' geophysics: rotation rate, shape and equatorial ridge. Icarus 190:179–202ADSGoogle Scholar
  25. Choukroun M (2007) Etude expérimentale et thermodynamique des hydrates sousression: Applications à Titan. Ph.D. Dissertation, Université de Nantes, FranceGoogle Scholar
  26. Choukroun M, Grasset O (2007) Thermodynamic model for water and high-pressure ices up to 2.2 GPa and down to the metastable domain. J Chem Phys 127(124):506–511 (doi:10.1063/1.2768957)Google Scholar
  27. Choukroun M, Grasset O, Sotin C, Tobie G (2008) Cryovolcanic release of methane on Titan: experimental constraints from the stability of methane clathrates inresence of ammonia. Lunar Planet. Sci. Conf. XXXIX, abstract #1837, Houston, TXGoogle Scholar
  28. Choukroun M, Grasset O, Tobie G, Sotin C. Stability of methane clath-rate hydrates underressure: implications for outgassingrocesses of methane on Titan. Icarus, accepted/inressGoogle Scholar
  29. Clampin M, Krist JE, Ardila DR, Golimowski DA, Hartig GF, Ford HC, Illingworth GD, Bartko F, BenÍtez N, Blakeslee JP, Bouwens RJ, Broadhurst TJ, Brown RA, Burrows CJ, Cheng ES, Cross NJG, Feldman PD, Franx M, Gronwall C, Infante L, Kimble RA, Lesser MP, Martel AR, Menanteau F, Meurer GR, Miley GK, Postman M, Rosati P, Sirianni M, Sparks WB, Tran HD, Tsvetanov ZI, White RL, Zheng W (2003) Hubble space telescope ACS coronographic imaging of the circumstellar disk around HD 141569A. Astronom J 126:385–392ADSGoogle Scholar
  30. Cochran AL, Cochran WD, Barker ES (2000) N 2 + and CO+ in comets 122P/1995 S1 (deVico) and C/1995 O1 (Hale-Bopp). Icarus 146:583–593ADSGoogle Scholar
  31. Coustenis A, Achterberg RK, Conrath BJ, Jennings DE, Marten A, Gautier D, Nixon CA, Flasar FM, Teanby NA, Bézard B, Samuelson RE, Carlson RC, Lellouch E, Bjoraker GL, Romani PN, Taylor FW, Irwin PGJ, Fouchet T, Hubert A, Orton GA, Kunde VG, Vinatier S, Mondellini J, Abbas MM, Courtin R (2007) The composition of Titan's stratosphere from Cassini/CIRS mid-infrared spectra. Icarus 189:35–62ADSGoogle Scholar
  32. Croft SK, Lunine JI, Kargel JS (1988) Equation of state of ammonia-water liquid: derivation andlanetological implications. Icarus 73:279–293ADSGoogle Scholar
  33. Dyadin YA, Aladko EY, Larionov EG (1997) Decomposition of methane hydrates up to 15 kbars. Mendel Comm 7(34–35):69–71Google Scholar
  34. Eisenberg D, Kauzmann W (1969) The structure androperties of water. Oxford University Press, New YorkGoogle Scholar
  35. Engel S, Lunine JI, Norton D (1994) Silicate interactions with ammonia-water fluids on early Titan. J Geophys Res 99:3745–3752ADSGoogle Scholar
  36. Fischer DA, Valenti J (2005) Thelanet-metallicity correlation. Astrophys J 622:1102–1117ADSGoogle Scholar
  37. Flasar FM, Achterberg RK, Conrath BJ, Pearl JC, Bjoraker GL, Jennings DE, Romani PN, Simon-Miller AA, Kunde VG, Nixon CA, Bézard B, Orton GS, Spilker LJ, Spencer JR, Irwin PGJ, Teanby NA, Owen TC, Brasunas J, Segura ME, Carlson RC, Mamoutkine A, Gierasch PJ, Schinder PJ, Showalter MR, Ferrari C, Barucci A, Courtin R, Coustenis A, Fouchet T, Gautier D, Lellouch E, Marten A, Prangé R, Strobel DF, Calcutt SB, Read PL, Taylor FW, Bowles N, Samuelson RE, Abbas MM, Raulin F, Ade P, Edgington S, Pilorz S, Wallis B, Wishnow EH (2005) Temperature, winds, and composition in the Saturnian system. Science 307:1247–1251ADSGoogle Scholar
  38. Fortes AD, Grindrod PM, Trickett SK, Vočadlo L (2007) Ammonium sulfate on Titan:ossible origin and role in cryovolcanism. Icarus 188(1):139–153ADSGoogle Scholar
  39. Gautier D, Hersant F (2005) Formation and composition oflanetesi-mals. Space Sci Rev 116:25–52ADSGoogle Scholar
  40. Gautier D, Hersant F, Mousis O, Lunine JI (2001) Enrichments in volatiles in Jupiter: a new interpretation of the Galileo measurements. Astrophys J 321:L13–L16Google Scholar
  41. Genov G, Kuhs WF, Staykova DK, Goreshnik E, Salamatin AN (2004) Experimental studies on the formation oforous gas hydrates. Am Mineral 89(8–9):1228–1239Google Scholar
  42. Goldreich P, Murray N, Longaretti PY et al (1989) Neptune's story. Science 245:500–504ADSGoogle Scholar
  43. Grasset O, Pargamin J (2005) The ammonia-water system at highressures: implications for the methane of Titan. Planet Space Sci 53:371–384ADSGoogle Scholar
  44. Grasset O, Sotin C (1996) The cooling rate of a liquid shell in Titan's interior. Icarus 123:101–112ADSGoogle Scholar
  45. Grasset O, Sotin C, Deschamps F (2000) On the internal structure and dynamics of Titan. Planet Space Sci 48:617–636ADSGoogle Scholar
  46. Griffith CA, Zahnle K (1995) Influx of cometary volatiles tolanetary moons: the atmospheres of 1000ossible Titans. J Geophys Res 100 (E8):16907–16922ADSGoogle Scholar
  47. Haar L, Gallagher JJ (1978) Thermodynamicroperties of ammonia. J Phys Chem Ref. Data 7:635–792ADSGoogle Scholar
  48. Hayne P, McCord TB, Combe J-Ph, Barnes JW, Hansen GB (2008) Titan: observational Constraints on cryovolcanism. LPSC 39:2010, abstract 1391ADSGoogle Scholar
  49. Hemley RJ, Jephcoat AP, Mao HK, Zha CS, Finger LW, Cox DE (1987) Static compression of H 2 O-ice to 128 Gpa (128 Mbar). Nature 330:737–740ADSGoogle Scholar
  50. Hersant F, Gautier D, Huré J-M (2001) A two-dimensional model for therimordial nebula constrained by D/H measurements in the solar system: implications for the formation of the giantlanets. Astrophys J 554:391–407ADSGoogle Scholar
  51. Hersant F, Gautier D, Lunine JI (2004) Enrichments I volatiles in the giantlanets of the solar system. Planet Space Sci 52:623–641ADSGoogle Scholar
  52. Hersant F, Gautier D, Tobie G, Lunine JI (2008) Interpretation of the carbon abundance in Saturn measured by Cassini. Planet Space Sci 56:1103–1111ADSGoogle Scholar
  53. Horst S, Vuitton V, Yelle RV (2008) The origin of oxygen species in Titan's atmosphere. J Geophys Res, 111(E10):E10006Google Scholar
  54. Hunten D (1978) A Titan atmosphere with a surface at 200 K. In: Hunte DM, Morrison D (eds) The Saturn system, NASA Conference Publication 2068,p 127–140Google Scholar
  55. Iess L, Armstrong JW, Asmar SW, Graziani A, Mackenzie R, Racioppa P, Rappaport N, Tortora P (2008) The gravity field of Titan from the first three Cassini flybys, Geophysical Research Abstracts Vol. 10, EGU2008-A-10849Google Scholar
  56. Iro N, Gautier D, Hersant F, Bockelée-Morvan D, Lunine JI (2003) An interpretation of the nitrogen deficiency in comets. Icarus 127:190–212Google Scholar
  57. Irvine WM, Schloerb FP, Crovisier J, Fegley B, Mumma MM (2000) Comets: a link between interstellar and nebular chemistry. In: Manning V, Boss AP, Russell SS (eds) Protostars andlanets I V. University of Arizona Press, Tucson, AZ,p 1159–1200Google Scholar
  58. Israël G, Szopa C, Raulin F, Cabane M, Niemann HB, Atreya SK, Bauer SJ, Brun J-F, Chassefière E, Coll P, Condé E, Coscia D, Hauchecorne A, Millian P, Nguyen M-J, Owen T, Riedler W, Samuelson RE, Siguier J-M, Steller M, Sternberg R, Vidal-Madjar C (2005) Complex organic matter in Titan's atmospheric aerosols from in situyrolysis and analysis. Nature 438:796–799ADSGoogle Scholar
  59. Jacobson RA (2004) The orbits of the major Saturnian satellites and the gravity field of Saturn from spacecraft and Earth-based observations. Astron J 18:492–501ADSGoogle Scholar
  60. Jacovi R, Bar-Nun A (2008) Removal of Titan's noble gases by their trapping in its haze. Icarus 196:302–304ADSGoogle Scholar
  61. Johnson T V, Lunine JI (2005) Saturn's moon Phoebe as a captured body from the outer Solar System. Nature 435:69–71ADSGoogle Scholar
  62. Jones T, Lewis JS (1987) Estimated impact shockroduction of N 2 and organic compounds on early Titan. Icarus 72:381–393ADSGoogle Scholar
  63. Kargel JS (1992) Ammonia-water volcanism on icy satellites:hase relations at 1 atmosphere. Icarus 100:556–574ADSGoogle Scholar
  64. Kaula WM (1979) Thermal evolution of Earth and Moon growing bylanetesimal impacts. J Geophys Res 84:999–1008ADSGoogle Scholar
  65. Kawakita H, Jehin E, Manfroid J, Hutsemekers D (2007) Nuclear spin temperature of ammonia in Comet 9P/Tempel 1 before and after the Deep Impact event. Icaris 191:513–516ADSGoogle Scholar
  66. Kirk RL, Stevenson DJ (1987) Thermal evolution of a differentiated Ganymede and implications for surface features. Icarus 69:91–134ADSGoogle Scholar
  67. Kossacki KJ, Lorenz RD (1996) Hiding Titan's oceans: densification and hydrocarbon storage in an icy regolith. Planet Space Sci 44(9):1029–1037ADSGoogle Scholar
  68. Kuramoto K, Matsui T (1994) Formation of a hotroto-atmosphere on the accreting giant icy satellite: implications for the origin and evolution of Titan, Ganymede, and Callisto. J Geophys Res 99 (E10):21,183–21,200ADSGoogle Scholar
  69. Lewis JS (1971) Satellites of the outerlanets: theirhysical and chemical nature. Icarus 15:174–185ADSGoogle Scholar
  70. Lewis JS (1972) Low temperature condensation from the solar nebula. Icarus 16:241–252ADSGoogle Scholar
  71. Lewis JS, Prinn RG (1980) Kinetic inhibition of CO and N 2 reduction in the solar nebula. Astrophys J 238:357ADSGoogle Scholar
  72. Lissauer JJ, Stevenson DJ (2007) Formation of giantlanets. In: Reipurth B, Jewitt D, Keil K (eds) Prostars andlanets V. Universityof Arizona Press, Tucson,p 591–606Google Scholar
  73. Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247ADSGoogle Scholar
  74. Lopes RMC, Mitchell KL, Stofan ER, Lunine JI, Lorenz R, Paganelli F, Kirk RL, Wood CA, Wall SD, Robshaw LE, Fortes AD, Neish CD, Radebaugh J, Reffet E, Ostro SJ, Elachi C, Allison MD, Anderson Y, Boehmer R, Boubin G, Callahan P, Encrenaz P, Flamini E, Francescetti G, Gim Y, Hamilton G, Hensley S, Janssen MA, Johnson WTK, Kellehera K, Muhleman DO, Ori G, Orosei R, Picardi G, Posa F, Roth LE, Seu R, Shaffer S, Soderblom LA, Stiles B, Vetrella S, West RD, Wye L, Zebker HA (2007) Cryovolcanic features on Titan's suface as revealed by the Cassini Titan Radar Mapper. Icarus 186:395–412ADSGoogle Scholar
  75. Lorenz RD, Wood CA, Lunine JI, Wall SD, Lopes RM, Mitchell KL, Paganelli F, Anderson YZ, Wye L, Tsai C, Zebker H, Stofan ER (2007) Titan's young surface: initial impact crater survey by Cassini RADAR and model comparison. Geophys Res Lett 34, L07204. doi:10.1029/2006GL028971Google Scholar
  76. Loveday JS, Nelmes RJ (2003) High-pressure neutron diffraction and models of Titan. High Pressure Res 23:41–47Google Scholar
  77. Loveday JS, Nelmes RJ, Guthrie M, Belmonte SA, Allan DR, Klug DD, Tse JS, Handa YP (2001) Stable methane hydrate above 2GPa and the source of Titan's atmospheric methane. Nature 410: 661–663ADSGoogle Scholar
  78. Lowell RP, Rona PA (2002) Seafloor hydrothermal systems driven by the serpentinization oferidotite. Geophys Res Lett 29(11):1531, doi:10.1029/2001GLO14411ADSGoogle Scholar
  79. Lubow SH, Seibert M, Artymowicz P (1999) Disk accretion onto highmasslanets. Astrophys J 526:1001–1012ADSGoogle Scholar
  80. Lunine JI (1985) Dissertation, California Institute of Technology Dissertation, Calif. Institute of Technology 329pGoogle Scholar
  81. Lunine JI, Stevenson DJ (1982) Formation of the Galilean satellites in a gaseous nebula. Icarus 52:14–39ADSGoogle Scholar
  82. Lunine JI, Stevenson DJ (1985) Thermodynamics of clathrate hydrate at low and highressures with application to the outer Solar system. Astrophys J Suppl Ser 58:493–531ADSGoogle Scholar
  83. Lunine JI, Stevenson DJ (1987) Clathrate and ammonia hydrates at highressure — application to the origin of methane on Titan. Icarus 70:61–77ADSGoogle Scholar
  84. Lunine JI, Stevenson DJ, Yung YK (1983) Ethane ocean on Titan. Science 222(4629):1229–1230ADSGoogle Scholar
  85. Lunine JI, Atreya SK, Pollack JB (1989) Present state and chemical evolution of the atmospheres of Titan, Triton, and Pluto. In: Origin and evolution oflanetary and satellite atmospheres. University of Arizona Press, Tucson, AZGoogle Scholar
  86. Machida MM, Kokubo E, Inutsuka S-I, Matsumoto T (2008) Angular momentum accretion onto a gas giantlanet. Astrophys J 685: 1220–1236ADSGoogle Scholar
  87. Magni G, Coradini A (2004) Formation of Jupiter by nucleated instability. Planet Space Sci 52:343–360ADSGoogle Scholar
  88. Mandt KE, Waite JH Jr, Magee BA, Bell JM, Nguyen M-J (2008) Isotopic fractionation in the upper atmosphere of Titan: INMS observations and implications for the atmosphere over geologic time-scales. Titan after Cassini workshop book of abstracts, Corpus Christi, TX, 29Google Scholar
  89. Mayer L, Quinn T, Wadsley J, Standel J (2002) Formation of giantlanets by fragmentation ofrotoplanetary disks. Science 298:1756–1759ADSGoogle Scholar
  90. McCord TB, Hayne P, Combe J-P, Hansen GB, Barnes JW, Rodriguez S, Le Mouélic S, Baines KH, Buratti BJ, Sotin C, Nicholson P, Jaumann R, Nelson R (2008) The Cassini VIMS Team. Titan's surface: Search for spectral diversity and composition using the Cassini VIMS investigation. Icarus 194:212–242ADSGoogle Scholar
  91. McKay CP, Scattergood TW, Pollack JB, Borucki WJ, van Ghyseghem HT (1988) High-temperature shock formation of N 2 and organics onrimordial Titan. Nature 322:520–522ADSGoogle Scholar
  92. Meyer MR, Backman DE, Weinberger AJ, Wyatt MC (2007) Evolution of circumstellar dusks around normal stars. In: Reipurth B, Jewitt D, Keil K (eds) Protostars andlanets V. University of Arizona Press, Tucson,p 573–590Google Scholar
  93. Miller SL (1961) The occurrence of gas hydrates in the solar system. Proc Natl Acad Sci 47(11):1798–1808ADSGoogle Scholar
  94. Mitri G, Showman AP, Lunine JI, Lorenz RD (2007) Hydrocarbon lakes on Titan. Icarus 186:385–394ADSGoogle Scholar
  95. Mitri G, Showman AP, Lunine JI, Lopes RMC (2008) Resurfacing of Titan by ammonia-water cryomagma. Icarus 196:216–224ADSGoogle Scholar
  96. Monteux J, Coltice N, Dubuffet F, Ricard Y (2007) Thermo-mechanical adjustment after impacts duringlanetary growth. Geophys Res Lett 34, CiteID L24201ADSGoogle Scholar
  97. Morbidelli A, Levison H (2008) Late evolution oflanetary systems. Physica Scripta T130:014028ADSGoogle Scholar
  98. Morrison D, Owen TC, Soderblom LA (1986) The satellites of Saturn. In: Burns JA, Matthews MS (eds) Satellites. University of Arizona Press, Tucson, AZ,p 764–801Google Scholar
  99. Mosqueira I, Estrada PR (2003) Formation of regular satellites of giantlanets in an extended gaseous nebula I: Subnebula model and accretion of satellites. Icarus 163:198–231ADSGoogle Scholar
  100. Mousis O, Gautier D, Bockelée-Morvan D (2002) An evolutionary turbulent model of Saturn's subnebula: implications for the origin of the atmosphere of Titan. Icarus 156:162–175ADSGoogle Scholar
  101. Mousis O, Marboeuf U, Lunine JI, Alibert Y, Fletcher LN, Orton GS, Pauzat F, Ellenger Y (2009a). Determination of the minimum masses of heavy elements in the envelopes of Jupiter and Saturn. Ap J 696:1348–1354ADSGoogle Scholar
  102. Mousis O, Lunine JI, Thomas C, Pasek M, Marboeuf U, Alibert Y, Ballenegger V, Cordier D, Ellinger Y, Pauzat F, Picaud S (2009b). Clathration of volatiles in the solar nebula and implications for the origin of Titan's atmosphere. Astrophys J 691:1780–1786ADSGoogle Scholar
  103. Mueller S, McKinnon WB (1988) Three layer Ganymedes and Callistos. Icarus 76(3):437–464ADSGoogle Scholar
  104. Niemann HB, Atreya SK, Bauer SJ, Carignan GR, Demick JE, Frost RL, Gautier D, Haberman JA, Harpold DN, Hunten DM, Israel G, Lunine JI, Kasprzak WT, Owen TC, Paulkovich M, Raulin F, Raaen E, Way SH (2005) The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygensrobe. Nature 438:779–784ADSGoogle Scholar
  105. Orton G, Fletcher L, Irwin P, Bjoracker G, Flasar FM, Wishnow E (2005) The super-solar abundance of methane in Saturn from Cassini CIRS spectra. Geophys Res, Abstracts , 7, European Geophysical Union, 05823Google Scholar
  106. Osegovic JP, Max MD (2005) Compound clathrate hydrate on Titan's surface. J Geophys Res (Planets) 110:8004Google Scholar
  107. Owen TC (1982) The composition and origin of Titan's atmosphere. Planet Space Sci 30:833–838ADSGoogle Scholar
  108. Owen TC, Bar-Nun A (1995) Comets, impacts and atmospheres. Icarus 116:215–226ADSGoogle Scholar
  109. Owen TC, Encrenaz T (2006) Compositional constraints on giantlanet formation. Planet Space Sci 54:1188–1196ADSGoogle Scholar
  110. Paganelli F, Janssen MA, Stiles B, West R, Lorenz RD, Lunine JI, Wall SD, Callahan P, Lopes RM, Stofan E, Kirk RL, Johnson WTK, Roth L, Elachi C (2008) The Radar Team. Titan's surface from Cassini RADAR SAR and high resolution radiometry data of the first five flybys. Icarus 191:211–222ADSGoogle Scholar
  111. Pollack JB, Hubickyj O, Bodenheimer P, Lissauer JJ, Podolak M, Greenzweig Y (1996) Formation of the giantlanets by concurrent accretion of solids and gas. Icarus 124:62–85ADSGoogle Scholar
  112. Prinn RG, Fegley B (1981) Kinetic inhibition of CO and N 2 reduction in circumplanetary nebulae: implications for satellite composition. Astrophys J 249:308–317ADSGoogle Scholar
  113. Prinn RG, Fegley B (1989) Solar Nebula chemistry: origin oflanetary, satellite, and cometary volatiles. In: Atreya SK, Pollack JB, Matthews MS (eds) Origin and evolution oflanetary and satellite atmospheres. University of Arizona Press, Tucson, AZGoogle Scholar
  114. R a fikov RR (2005) Can giantlanets form by direct gravitational instability? Astrophys J 621:L69–L72ADSGoogle Scholar
  115. Rollet AP, Vuillard G (1956) Sur un nouvel hydrate de l'ammoniac. C.-R. Acad. Sci. Paris 243:383–386Google Scholar
  116. Sagan C, Dermott SF (1982) Tides in the seas of Titan. Nature 300: 731–733ADSGoogle Scholar
  117. Schubert G, Stevenson DJ, Ellsworth K (1981) Internal structures of the galilean satellites. Icarus 47:46–59ADSGoogle Scholar
  118. Schubert G, Spohn T, Reynolds RT (1986) Thermal histories, compositions and internal structure of the moons of the solar system. In: Burns JA, Matthews MS (eds) Satellites. University of Arizona Press, Tucson, AZ, 224–292Google Scholar
  119. Scott HP, Williams Q, Ryerson FJ (2002) Experimental constraints on the chemical evolution of large icy satellites. Earth Planet Sci Lett 203:399–412ADSGoogle Scholar
  120. Sekine Y, Sugita S, Shido T, Yamamoto T, Iwasawa Y, Kadono T, Matsui T (2005) The role of Fischer—Tropsch catalysis in the origin of methane-rich Titan. Icarus 178:154–164ADSGoogle Scholar
  121. Senshu H, Kuramoto K, Matsui T (2002) Thermal evolution of a growing Mars, J Geophys Res 107(E12):5118. doi:10.1029/ 2001JE001819Google Scholar
  122. Sloan EDJ (1998) Clathrate hydrates of natural gases, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  123. Sohl F, Hussmann H, Schwentker B, Spohn T, Lorenz RD (2003) Interior structure models and tidal Love numbers of Titan. J Geophys Res 108(E12). CiteID 5130Google Scholar
  124. Sotin C, Grasset O, Beauchesne S (1998) Thermodynamicalroperties of highressure ices. Implications for the dynamics and internal structure of large icy satellites. In: Solar System Ices, Based on reviewsresented at the international symposium “Solar system ices” held in Toulouse, France, on March 27–30, 1995, Dordrecht Kluwer Academic, Astrophysics and space science library (ASSL), vol 227. ISBN0792349024,79Google Scholar
  125. Sotin C, Jaumann R, Buratti BJ, Brown RH, Clark RN, Soderblom LA, Baines KH, Bellucci G, Bibring J-P, Capaccioni P, Combes M, Coradini A, Cruikshank DP, Drossart P, Formisano V, Langevin Y, Matson DL, McCord TB, Nelson RM, Nicholson PD, Sicardy B, LeMouelic S, Rodriguez S, Stephan K, Scholz CK (2005) Release of volatiles from aossible cryovolcano from near-infrared imaging of Titan. Nature 435:786–789ADSGoogle Scholar
  126. Stevenson DJ (1992) Interior of Titan. Proceedings of the ESA's Symposium on Titan, European Space Agency Special Publication, SP-338p 29–33Google Scholar
  127. Stevenson DJ, Harris AW, Lunine JI (1986) Origins of satellites. In: Burns JA, Matthews MS (eds) Satellites. University of Arizon Press, Tucson, AZ,p 39–88Google Scholar
  128. Stofan ER, Elachi C, Lunine JI, Lorenz RD, Stiles B, Mitchell KL, Ostro S, Soderblom L, Wood C, Zebker H, Wall S, Janssen M, Kirk R, Lopes R, Paganelli F, Radebaugh J, Wye L, Anderson Y, Allison M, Boehmer R, Callahan P, Encrenaz P, Flamini E, Francescetti G, Gim Y, Hamilton G, Hensley S, Johnson WTK, Kelleher K, Muhleman D, Paillou P, Picardi G, Posa F, Roth L, Seu R, Shaffer S, Vetrella S, West R (2007) The lakes of Titan. Nature 445:61–64ADSGoogle Scholar
  129. Strobel DF (1982) Chemistry and evolution of Titan's atmosphere. Planet Space Sci 30:839–848ADSGoogle Scholar
  130. Strobel DF (2008) Titan's hydrodynamically escaping atmosphere. Icarus 198:588–594ADSGoogle Scholar
  131. Thomas C, Mousis O, Ballenegger V, Picaud S (2007) Clathrate hydrates as a sink of noble gases in Titan's atmosphere. Astron Astrophys 474:L17–L20ADSGoogle Scholar
  132. Tian F, Stewart AIF, Toon OB, Larsen KW, Esposito LW (2007) Monte Carlo simulations of the water vaporlumes on Enceladus. Icarus 188:154–161ADSGoogle Scholar
  133. Tobie G, Grasset O, Lunine JI, Mocquet A, Sotin C (2005) Titan's internal structure inferred from a coupled thermal-orbital model. Icarus 175:496–502ADSGoogle Scholar
  134. Tobie G, Lunine JI, Sotin C (2006) Episodic outgassing as the origin of atmospheric methane on Titan. Nature 440:61–64ADSGoogle Scholar
  135. Tobie G, Choukroun M, Grasset O, Le Mouelic S, Lunine JI, Sotin C, Bourgeois O, Gautier D, Hirtzig M, Lebonnois S, Le Corre L (2009) Evolution of Titan and implications for its hydrocarbon cycle. Philo Trans R Soc A 367:619–631ADSGoogle Scholar
  136. Tomasko MG, Archinal B, Becker T, Bézard B, Bushroe M, Combers M, Cook D, Coustenis A, de Bergh C, Dafoe LE, Doose L, Douté S, Eibl A, Engel S, Gliem F, Grieger B, Holso K, Howington-Kraus E, Karkoschka E, Keller HU, Kirk R, Kramm R, Küppers M, Lanagan P, Lellouch E, Lemmon M, Lunine JI, McFarlane E, Moores J, Prout GM, Rizk B, Rosiek M, Rueffer P, Schröder SE, Schmitt B, See C, Smith P, Soderblom LA, Thomas N, West R (2005) Rain, wind and haze during the Huygen'srobe descent to Titan's surface. Nature 438:765–778ADSGoogle Scholar
  137. Udry S, Fischer D, Queloz D (2007) A decade of radial velocity discoveries in the exoplanets domain. In: Reipurth B, Jewitt D, Keil K (eds) Protostars andlanets V. University of Arizona Press, Tucson,p 685–700Google Scholar
  138. Wadhwa M, Amelin Y, Davis AM et al (2007) From dust tolanetesi-mals: implications for the solarrotoplanetary disk from short-liver radionuclides. In: Reipurth B, Jewitt D, Keil K (eds) Protostars andlanets V. University of Arizona Press, Tucson,p 836–848Google Scholar
  139. Waite JH, Jr., Lewis WS, Magee BA, Lunine JI, McKinnon WB, 11 others (2009). Liquid water on Enceladus from observations of ammonia and 40Ar in thelume. Nature 460:487–490ADSGoogle Scholar
  140. Weidenschilling SJ (1997) The origin of comets in the solar nebula: a unified model. Icarus 127:290–306ADSGoogle Scholar
  141. Wong MH, Lunine JI, Atreya SK, Johnson T, Mahaffy PR, Owen TC, Encrenaz T (2008) Oxygen and other volatiles in the giantlanets and their satellites. Rev Mineral Geochem 68:219–246Google Scholar
  142. Wuchterl G, Guillot T, Lissauer JJ (2000). In: Mannings V, Boss AP, Russell SS (eds) Protostars andlanets I V. University of Arizona Press, Tucson,p 1081–1109Google Scholar
  143. Yelle RV, Cui J, Mueller-Wordag I (2008) Methane escape from Titan's atmosphere. J Geophys Res, 113(E10):E10003ADSGoogle Scholar
  144. Yung YL, Allen M, Pinto JP (1984) Photochemistry of the atmosphere of Titan – comparison between mode and observations. Astrophys J Suppl Ser 55:465–506ADSGoogle Scholar
  145. Zahnle KJ, Walker JCG (1982) The evolution of solar ultraviolet luminosity. Rev Geophys and Space Phys 20:280–292ADSGoogle Scholar
  146. Zahnle K, Pollack JB, Grinspoon D, Dones L (1992) Impact-generated atmospheres over Titan, Ganymede, and Callisto. Icarus 95(1):1–23ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jonathan Lunine
    • 1
  • Mathieu Choukroun
    • 2
  • David Stevenson
    • 3
  • Gabriel Tobie
    • 4
  1. 1.Lunar and Planetary LaboratoryThe University of ArizonaTucsonUSA
  2. 2.NASA Jet Propulsion LaboratoryPasadenaUSA
  3. 3.Division of Geological and Planetary ScienceCalifornia Institute of TechnologyPasadenaUSA
  4. 4.Laboratoire de Planetologie et GeodynamiqueUniversite' de NantesNantesFrance

Personalised recommendations