Skip to main content

Energy Deposition Processes in Titan's Upper Atmosphere and Its Induced Magnetosphere

  • Chapter

Abstract

Most of Titan's atmospheric organic and nitrogen chemistry, aerosol formation, and atmospheric loss are driven from external energy sources such as Solar UV, Saturn's magnetosphere, solar wind and galactic cosmic rays. The Solar UV tends to dominate the energy input at lower altitudes~1,200 km but which can extend down to ~400 km, while the plasma interaction from Saturn's magnetosphere, Saturn's magnetosheath or solar wind are more important at higher altitudes ~1,400 km, but the heavy ion plasma (O+) ~5 keV and energetic ions (H+) ~ 30 keV or higher from Saturn's magnetosphere can penetrate below 950 km. Cosmic rays with energies >1 GeV can penetrate much deeper into Titan's atmosphere with most of its energy deposited ~70 km altitude. Haze layers are observed in scattered solar photons starting at 510 km, but aerosols are broadly distributed and measured in extinction from 1,000 km downward, diffusively separated to 400 km. The induced magnetic field from Titan's interaction with the external plasma can be very complex and will tend to channel the flow of energy into Titan's upper atmosphere. Cassini observations combined with advanced hybrid simulations of the plasma interaction with Titan's upper atmosphere show significant changes in the character of the interaction with Saturn local time at Titan's orbit where the magnetosphere displays large and systematic changes with local time. The external solar wind can also drive sub-storms within the magnetosphere which can then modify the magnetospheric interaction with Titan. Another important parameter is solar zenith angle (SZA) with respect to the co-rotation direction of the magnetospheric flow which is referred to as the solar incidence-ram angle. Titan's interaction can contribute to atmospheric loss via pickup ion loss, scavenging of Titan's ionospheric plasma, loss of ionospheric plasma down its induced magnetotail via an ionospheric wind, and non-thermal loss of the atmosphere via heating and sputtering induced by the bombardment of magnetospheric keV ions and electrons. This energy input evidently drives the large positive and negative ions observed below ~1,100 km altitude with ion masses exceeding 10,000 Da. We refer to these ions as seed particles for the aerosols observed below 1,000 km altitude. These seed particles can be formed, for example, from the polymerization of acetylene (C2H2) and benzene (C6H6) molecules in Titan's upper atmosphere to form polycyclic aromatic hydrocarbons (PAH) and/or fullerenes (C60). In the case of fullerenes, which are hollow spherical carbon shells, magnetospheric keV O+ ions can become trapped inside the fullerenes and eventually find themselves inside the aerosols as free oxygen. The aerosols are then expected to fall to Titan's surface as polymerized hydrocarbons with trapped free oxygen where unknown surface chemistry can take place.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achilleos N, Arridge CS, Bertucci C et al (2008) Large-scale dynamics of Saturn's magnetopause: observations by Cassini. J Geophys Res Space Phys 113:A11209

    Article  ADS  Google Scholar 

  • Ågren K, Wahland J-E, Modolo R, Lummerzheim D, Galand M, Muller-Wodard I, Canu P, Kurth WS, Cravens TE, Yelle RV, Waite Jr JH, Coates AJ, Lewis GR, Young DT, Bertucci C, Dougherty MK (2007) On magnetospheric electron impact ionization and dynamics in Titan's ram-side and polar ionosphere, a Cassini case study. Ann Geophys 25:2359–2369

    Article  ADS  Google Scholar 

  • Ajello JM, Ciocca M (1996) Fast nitrogen atoms from dissociative excitation of N2 by electron impact. J Geophys Res 101(18):953

    Google Scholar 

  • Ajello JM, Stevens MH, Stewart I, Larsen K, Esposito L, Colwell J, McClintock W, Holsclaw G, Gustin J, Pryor W (2007) Titan airglow spectra from Cassini ultraviolet imaging spectrograph (UVIS): EUV analysis. Geophys Res Lett 34:L24204. doi:10.1029/2007GL031555

    Article  ADS  Google Scholar 

  • Ajello JM, Gustin J, Stewart I, Larsen K, Esposito L, Pryor W, McClintock W, Stevens MH, Malone CP, Dziczek D (2008) Titan airglow spectra from Cassini ultraviolet imaging spectrograph (UVIS): FUV disk analysis. Geophys Res Lett 35:L06102. doi:10.1029/2007GL032315

    Article  Google Scholar 

  • Allen M, Pinto JP, Yung YL (1980) Titan: aerosol photochemistry and variations related to the sunspot cycle. Astrophys J 242:L125–L128

    Article  ADS  Google Scholar 

  • Arridge CS, Khurana KK, Russell CT et al (2008a) Warping of Saturn's magnetospheric and magnetotail current sheets. J Geophys Res Space Phys 113:A08217

    Article  Google Scholar 

  • Arridge CS, Russell CT, Khurana KK et al (2008b) Saturn's magneto-disc current sheet. J Geophys Res Space Phys 113:A04214

    Article  Google Scholar 

  • Arridge CS, Andre N, Achilleos N et al (2008c) Thermal electron periodicities at 20R(S) in Saturn's magnetosphere. Geophys Res Lett 35:L15107

    Article  ADS  Google Scholar 

  • Backes H, Neubauer FM, Dougherty MK, Achilleos N, Andre N, Arridge CS, Bertucci C, Jones GH, Khurana KK, Russell CT, Wennmacher A (2005) Titan's magnetic field signature during the first Cassini encounter. Science 308:992–995. doi:10.1126/science.1109763

    Article  ADS  Google Scholar 

  • Banaszkiewicz M, Lara LM, Rodrigo R, et al. (2000) The upper atmosphere and ionosphere of Titan: a coupled model. In Planetary ionospheres and magnetospheres, pp 1547–1550

    Google Scholar 

  • Bertucci C, Neubauer FM, Szego K, Wahlund J-E, Coates AJ, Dougherty MK, Young DT, Kurth WS (2007) Structure of Titan's mid-range magnetic tail: Cassini magnetometer observations during the T9 flyby. Geophys Res Lett 34:L24S02. doi:10.1029/2007GL030865

    Article  Google Scholar 

  • Bertucci C, Achilleos N, Dougherty MK et al (2008) The magnetic memory of Titan's ionized atmosphere. Science 321:1475–1478

    Article  ADS  Google Scholar 

  • Bertucci C, Sinclair B, Achilleos N, Hunt P, Dougherty MK, Arridge CS (2009) The variability of Titan's magnetic environment. Planet Space Sci (in press)

    Google Scholar 

  • Bird MK, Dutta-Roy R, Asmar SW, Rebold TA (1997) Detection of Titan's ionosphere from Voyager 1 radio occultation observations. Icarus 130:426–436

    Article  ADS  Google Scholar 

  • Blanc M et al (2002) Magnetospheric and plasma science with Cassini-Huygens. Space Sci Rev 104:253–346

    Article  ADS  Google Scholar 

  • Bohme DK (1992) PAH and Fullerene ions and ion/molecule reactions in interstellar and circumstellar chemistry. Chem Rev 92:1487–1508

    Article  Google Scholar 

  • Borucki WJ, Whitten RC (2008) Influence of high abundances of aerosols on the electrical conductivity of the Titan atmosphere. Planet Space Sci 56:19–26

    Article  ADS  Google Scholar 

  • Borucki WJ, Levin Z, Whitten RC, Keesee RG, Capone LA, Summers AL, Toon OB, Dubach J (1987) Predictions of the electrical conductivity and charging of the aerosols in Titan's atmosphere. Icarus 72:604–622

    Article  ADS  Google Scholar 

  • Borucki WJ, Whitten RC, Bakes ELO, Barth E, Tripathi S (2006) Predictions of the electrical conductivities and charging of aerosols in Titan's atmosphere. Icarus 181:527–544

    Article  ADS  Google Scholar 

  • Brecht SH, Luhmann JG, Larson DJ (2000) Simulation of the Saturnian magnetospheric interaction with Titan. J Geophys Res 105:13, 119–13,130

    Article  ADS  Google Scholar 

  • Bridge HS et al (1981) Plasma observations near Saturn: initial results from Voyager 1. Science 212:217

    Article  ADS  Google Scholar 

  • Broadfoot AL et al (1981) Extreme ultraviolet observations from Voyager 1 — encounter with Saturn. Science 212:206

    Article  ADS  Google Scholar 

  • Calcote HF, Keil DG (1990) The role of ions in soot formation Pure Appl Chem 62:815

    Article  Google Scholar 

  • Caldwell KA, Giblin DE, Hsu CS, Cox D, Gross ML (1991) Endohedral Complexes of fullerene radical cations. J Am Chem Soc 113:8519–8521

    Article  Google Scholar 

  • Caldwell KA, Giblin DE, Gross ML (1992) High-energy collisions of fullerene radical cations with target gases - capture of the target gas and charge stripping of C-60(.+), C-70(.+), and C-84(.+). J Am Chem Soc 114:3743–3756

    Article  Google Scholar 

  • Capone LA, Dubach J, Whitten RC, Prasad SS, Santhanam K (1980) Cosmic ray synthesis of organic molecules in Titan's atmosphere. Icarus 44:72–84

    Article  ADS  Google Scholar 

  • Capone LA, Dubach J, Prasad SS, Whitten RC (1983) Galactic cosmic rays and N2 dissociation on Titan. Icarus 55:73–82

    Article  ADS  Google Scholar 

  • Coates AJ, Crary FJ, Young DT, Szego K, Arridge CS, Bebsi Z, Sittler EC Jr, Hartle RE, Hill TW (2007a) Ionospheric electrons in Titan's tail: plasma structure during the Cassini T9 encounter. Geophys Res Lett 34:L24S05. doi:10.1029/2007GL030919

    Article  Google Scholar 

  • Coates AJ, Crary FJ, Lewis GR, Young DT, Waite Jr JH, Sittler EC Jr (2007b) Discovery of heavy negative ions in Titan's ionosphere. Geophys Res Lett 34:L22103. doi:10.1029/2007GL030978

    Article  ADS  Google Scholar 

  • Coates AJ, Lewis GR, Wellbrock A, Young DT, Crary FJ, Waite Jr JH (2009) Heavy negative ions in Titan's ionosphere: altitude and latitude dependence. Presented at Titan after Cassini-Huygens symposium. Corpus Christi, Texas, 6–11 July 2008

    Google Scholar 

  • Coustenis A, Salama A, Lellouch E, Encrenaz T, Bjoraker GL, Sameulson RE, de Graauw T, Feuchtgruber H, Kessler MF (1998) Evidence for water vapor in Titan's atmosphere from ISO/SWS data. Astron Astrophys 336:L85–L89

    ADS  Google Scholar 

  • Cravens TE, Keller CN, Ray B (1997) Photochemical sources of non-thermal neutrals for the exosphere of Titan. Planet Space Sci 45, No. 8:889–896

    Article  ADS  Google Scholar 

  • Cravens TE, Lindgren CJ, Ledvina SA (1998) A two-dimensional mul-tifluid MHD model of Titan's plasma environment. Planet Space Sci 46, No. 9/10:1193–1205

    Article  ADS  Google Scholar 

  • Cravens TE, Vann J, Clark J et al (2004) The ionosphere of Titan: an updated theoretical model. 2nd World Space Congress/34th COSPARScientific Assembly, Oct. 10–19, 2002, Houston, TX, Planet. Atmos Ionosph Plasma Int Adv Space Res 33:212–215

    ADS  Google Scholar 

  • Cravens TE, Robertson IP, Clark J, Wahlund J-E, Waite Jr JH, Ledvina SA, Niemann HB, Yelle RV, Kasprzak WT, Luhmann JG, McNutt RL, Ip W-H, De La Haye V, Muller-Wodarg I, Young DT, Coates AJ (2005) Titan's ionosphere: model comparison with Cassini Ta data. Geophys Res Lett 32:L12108. doi:10.1029/2005GL023249

    Article  ADS  Google Scholar 

  • Cravens TE, Robertson IP, Waite Jr JH, Yelle RV, Kasprzak WT, Keller CN, Ledvina SA, Niemann HB, Luhmann JG, McNutt RL, Ip W-H, De La Haye V, Mueller-Wodarg I, Wahlund J-E, Anicich VG, Vuitton V (2006) Composition of Titan's ionosphere. Geophys Res Lett 33:L07105

    Article  Google Scholar 

  • Cravens TE, Robertson IP, Ledvina SA, Michell D, Krimigis SM, Waite Jr JH (2008) Energetic ion precipitation at Titan. Geophys Res Lett 35:L03103

    Article  Google Scholar 

  • Cravens TE, Robertson IP, Waite Jr JH, Yelle RV, Vuitton V, Coates AJ, Wahlund J-E, Ågren K, Richard MS, De La Haye V, Wellbrock A, Neubauer FM (2009) Model-data comparisons for Titan's nightside ionosphere. Icarus 199:174–188

    Article  ADS  Google Scholar 

  • Cuzzi JN, Estrada PR (1998) Compositional evolution of Saturn's rings due to meteoroid bombardment. Icarus 132:1–32

    Article  ADS  Google Scholar 

  • Dandouras J, Amsif A (1999) Production and imaging of energetic neutral atoms from Titan's exosphere: a 3-D model. Planet Space Sci 47:1355–1369

    Article  ADS  Google Scholar 

  • Dandouras I, Garnier P, Mitchell DG, Roelof EC, Brandt PC, Krupp N, Krimigis SM (2008) Titan's exosphere and its interaction with Saturn's magnetosphere. Phil Trans RSoc A. doi:10.1098/ rsta.2008.0249

    Google Scholar 

  • De La Haye V, Waite Jr JH, Johnson RE, Yelle RV, Cravens TE, Luhmann JG, Kasprzak WT, Gell DA, Magee B, Leblanc F, Michael M, Jurac S, Robertson IP (2007) Cassini ion and neutral mass spectrometer data in Titan's upper atmosphere and exo-sphere: observations of a suprathermal corona. J Geophys Res 112:A07309

    Article  Google Scholar 

  • Dobe Z, Szego K, Quest KB, Vtali D Shapiro, Hartle RE, Sittler EC Jr (2007) Nonlinear evolution of modified two-stream instability above ionosphere of Titan: Comparison with the data of the Cassini plasma spectrometer. J Geophys Res 112:A03203. doi:10.1029/2006JA011770

    Article  Google Scholar 

  • Dougherty MK et al (2004) The Cassini magnetic field investigation. Space Sci Rev 114:331–383

    Article  ADS  Google Scholar 

  • English MA, Lara LM, Lorenz RD, Ratcli P, Rodrigo R (1996) Ablation and chemistry of meteoric materials in the atmosphere of Titan. Adv Space Res 17:157–160

    Article  ADS  Google Scholar 

  • Esposito LW et al (2004) The Cassini ultraviolet imaging spectrograph investigation. Space Sci Rev 115:299–361

    Article  ADS  Google Scholar 

  • Fox JL, Yelle RV (1997) Hydrocarbon ions in the ionosphere of Titan. Geophys Res Lett 24:2179–2182

    Article  ADS  Google Scholar 

  • Frencklach M (2002) Reaction mechanism of soot formation in flames. Phys Chem Chem Phys 4:2028–2037

    Article  Google Scholar 

  • Fulchignoni M et al (2002) The characterization of Titan's atmospheric physical properties by the Huygens atmospheric structure instrument (HASI). Space Sci Rev 104:395–431

    Article  ADS  Google Scholar 

  • Fulchignoni M, Aboudan A, Angrilli F et al (2004) A stratospheric balloon experiment to test the Huygens atmospheric structure instrument (HASI). Planet Space Sci 52:867–880

    Article  ADS  Google Scholar 

  • Fulchignoni M et al (2005) In situ measurements of the physical characteristics of Titan's environment. Nature 438:785–791

    Article  ADS  Google Scholar 

  • Galand M, Lilensten J, Toublanc D, Maurice S (1999) The ionosphere of Titan: Ideal diurnal and nocturnal cases. Icarus 140:92–105

    Article  ADS  Google Scholar 

  • Galand M et al (2006) Electron temperature of Titan's sunlit ionosphere. Geophys Res Lett 33:L21101. doi:10.1029/2006GL027488

    Article  ADS  Google Scholar 

  • Gan L, Keller CN, Cravens TE (1992) Electrons in the ionosphere of Titan. J Geophys Res 97:12,137–12,151

    ADS  Google Scholar 

  • Gan L, Cravens TE, Keller CN (1993) A time-dependent model of suprathermal electrons at Titan. Plasma Environ Non-Magnet Planets 4:171. (Proceedings of COSPAR colloquium held in Ann Arbor, MI, August, 1992)

    ADS  Google Scholar 

  • Garnier P, Dandouras I, Toublanc D, Brandt PC, Roelof EC, Mitchell DG, Krimigis SM, Krupp N, Hamilton DC, Waite H (2007) The exosphere of Titan and its interaction with the kronian magnetosphere : MIMI observations and modeling. Planet Space Sci 55:165. doi:10.1016/j.pss.2006.07.006

    Article  ADS  Google Scholar 

  • Garnier P, Dandouras I, Toublanc D, Roelof EC, Brandt PC, Mitchell DG, Krimigis SM, Krupp N, Hamilton DC, Dutuit O, Wahlund JE (2008a) The lower exosphere of Titan: energetic neutral atoms absorption and imaging. J Geophys Res 113:A10216. doi:10.1029/2008JA013029

    Article  ADS  Google Scholar 

  • Garnier P, Dandouras I, ToublancD, Roelof EC, Brandt PC, Mitchell DG, Krimigis SM, Krupp N, Hamilton DC, Waite H, Wahlund JE (2008b) A non thermal model for the extended Titan exosphere. Icarus (submitted)

    Google Scholar 

  • Gerhardt Ph, Löffler S, Homann KH (1987) Polyhedral carbon ions in hydrocarbon flames. Chem Phys Lett 137(4):306–310

    Article  ADS  Google Scholar 

  • Grard R (1992) The significance of meteoric ionization for the propagation of lightning spherics in the atmosphere of Titan. ESA Sci Publ 338:125–128

    ADS  Google Scholar 

  • Grebowsky JM, Goldberg RA, Pesnell WD (1998) Do meteor showers significantly perturb the ionosphere? J Atmos Terr Phys 60:607–615

    Article  ADS  Google Scholar 

  • Grün E, Zook HA, Fechtig H, Giese RH (1985) Collisional balance of the meteoritic complex. Icarus 62:244–272

    Article  ADS  Google Scholar 

  • Gurnett DA, Kurth WS, Scarf FL (1981) Plasma waves near Saturn: initial results from Voyager 1. Science 212:235–239

    Article  ADS  Google Scholar 

  • Gurnett DA, Scarf FL, Kurth WS (1982) The structure of Titan's wake from plasma wave observations. J Geophys Res 87:1395–1403

    Article  ADS  Google Scholar 

  • Gurnett DA et al (2004) The Cassini radio and plasma wave investigation. Space Sci Rev 114:395–463

    Article  ADS  Google Scholar 

  • Gustin J, Ajello J, Stevens M, Stewart I, Stephan A, Esposito L (2009) Titan airglow spectra from Cassini UVIS: III. FUV Limb Analysis. Geophys Res Lett (in review)

    Google Scholar 

  • Hamelin M et al (2006) Titan's atmospheric electricity from measurements of the PWA-HASI instrument on board the Huygens probe. Titan's atmospheric electricity-PWA-HASI Team-EUROPLANET-Berlin

    Google Scholar 

  • Hartle RE, Sittler EC Jr (2007) Pckup ion phase space distributions: Effects of atmospheric spatial gradients. J Geophysic Res 112:A07104. doi:10.1029/2006JA012157

    Article  Google Scholar 

  • Hartle RE, Sittler EC (2008) Comparisons of selected atmospheric escape mechanisms on Venus, Mars and Titan. European Planetary Science Congress 3: 2008-A-00453

    Google Scholar 

  • Hartle RE, Sittler EC Jr, Ogilvie KW, Scudder JD, Lazarus AJ, Atreya SK (1982) Titan's ion exosphere observed from Voyager 1. J Geophys Res 87:1383

    Article  ADS  Google Scholar 

  • Hartle RE, Sittler EC Jr, Neubauer FM, Johnson RE, Smith HT, Crary F, McComas DJ, Young DT, Coates AJ, Simpson D, Bolton S, Reisenfeld D, Szego K, Berthelier JJ, Rymer A, Vilppola J, Steinberg JT, Andre N (2006a) Preliminary interpretation of Titan plasma interaction as observed by the Cassini plasma spectrometer: comparisons with Voyager 1. Geophys Res Lett 33:L08201. doi:10.1029/2005GL024817

    Article  Google Scholar 

  • Hartle RE, Sittler EC Jr, Neubauer FM, Johnson RE, Smith HT, Crary F, McComas DJ, Young DT, Coates AJ, Simpson D, Bolton S, Reisenfeld D, Szego K, Berthelier JJ, Rymer A, Vilppola J, Steinberg JT, Andre N (2006b) Initial interpretation of Titan plasma interaction as observed by the Cassini plasma spectrometer: comparisons with Voyager 1. Planet Space Sci 54:1211

    Article  ADS  Google Scholar 

  • Hartle RE, Sittler EC Jr, Shappirio MD, Johnson RE, Tucker OJ, Luhmann JG, Ledvina SA, Cooper JF, Coates AJ, Szego K, Burger MH, Simpson DG, Crary F, Young DT (2006c) Saturn's magnetosphere ion erosion by Titan: penetration and loss of water group ions in upper atmosphere. J Geophys Res (manuscript in preparation)

    Google Scholar 

  • Hartle RE, Sittler EC Jr, Lipatov AS (2008a) Ion escape from the ionosphere of Titan. Geophys Res Abst Vol. 10, EGU2008-A-09860, 2008. SRef-ID: 1607-7962/gra/EGU2008-A-09860, EGU General Assembly

    Google Scholar 

  • Hartle RE, Sittler EC Jr, Lipatov AS, Bertucci C, Coates AJ, Szego K, Shappirio MD, Simpson DG (2008b) Effects of pickup ions on Titan's interaction with Saturn's magnetosphere during the T9 Flyby, 2008 Joint Assembly, P31A-06

    Google Scholar 

  • Hillier JK, Green SF, McBride N, Schwanethal JP, Postberg F, Srama R, Kempf S, Moragas-Klostermeyer G, McDonnell JAM, Grün E (2007b) The composition of Saturn's E ring. Mon Not R Astron Soc 377:1588–1596

    Article  ADS  Google Scholar 

  • Hillier JK, Green SF, McBride N, Altobelli N, Postberg F, Kempf S, Schwanethal J, Srama R, McDonnell JAM, Grün E (2007a) Interplanetary dust detected by the Cassini CDA chemical analyser. Icarus 190:643–654

    Article  ADS  Google Scholar 

  • Holberg JB, Forrester WT, Shemansky DE (1982) Voyager absolute far-ultraviolet spectrophotometry of hot stars. Astrophys J 257:656–671

    Article  ADS  Google Scholar 

  • Holberg JB, Ali B, Carone TW, Polidan RS (1991) Absolute far-ultraviolet spectrometry of hot subluminous stars from Voyager. Astrophys J 375:716–721

    Article  ADS  Google Scholar 

  • Hörst SM, Vuitton V, Yelle RV (2008) The origin of oxygen species in Titan's atmosphere. J Geophys Res 113:E10006

    Article  Google Scholar 

  • Hughes DW (1978) Meteors. In: McDonnell JAM (ed) Cosmic dust. Wiley, Chichester, pp 123–184

    Google Scholar 

  • Humes DH (1980) Results of Pionner 10 and 11 meteoroid experiments: interplanetary and near-Saturn. J Geophys Res 85:5841–5852

    Article  ADS  Google Scholar 

  • Hunten DM, Tomasko MG, Flasar FM, Samuelson RE, Strobel DF, Stevenson DJ (1984) Titan. In: Saturn. Gehrels T, Matthews MS (eds). 671–759

    Google Scholar 

  • Hunter JM, Fye JL, Roskamp EJ and Jarrold MF (1994) Isomerization of pure carbon cluster ions: From rings to fullerences, Molecules and Grains in Space, AIP Conference Proceedings 312, Mont Sainte-Odile, France 1993, editor Iréne Nenner, 571–588

    Google Scholar 

  • Ip W.-H., (1984) Ring torque of Saturn from interplanetary meteo roid impact Icarus 60:547–552

    Article  ADS  Google Scholar 

  • Ip W-H (1990) Meteoroid ablation processes in Titan's atmosphere. Nature 345:511–512

    Article  ADS  Google Scholar 

  • Ip W-H (1992) The nitrogen tori of Titan and Triton. Adv Space Res 12(8):73

    Article  ADS  Google Scholar 

  • Israelevich PL, Neubauer FM, Ershkovich AI (1994) The induced magnetosphere of comet Halley — interplanetary magnetic-field during GIOTTO encounter. J Geophys Res Space Phys 99:6575–6583

    Article  ADS  Google Scholar 

  • Johnson RE, Liu M, Sittler EC Jr (2005) Plasma-induced clearing and redistribution of material embedded in planetary magnetospheres. Geophys Res Lett 32:L24201. doi:10.1029/2005GL024275

    Article  ADS  Google Scholar 

  • Jones W (1997) Theoretical and observational determinations of the ion-ization coefficient of meteors. Mon Not R Astron Soc 288:995–1003

    ADS  Google Scholar 

  • Kallio E, Sillanpää I, Janhunen P (2004) Titan in subsonic and supersonic flow. Geophys Res Lett 31:L15703

    Article  ADS  Google Scholar 

  • Keller CN, Cravens TE, Gan L (1992) A model of the ionosphere of Titan. J Geophys Res 97:12117–12135

    Article  ADS  Google Scholar 

  • Keller CN, Anicich VG, Cravens TE (1998a) Model of Titan's ionosphere with detailed hydrocarbon chemistry. Planet Space Sci 46:1157

    Article  ADS  Google Scholar 

  • Keller CN, Anicich VG, Cravens TE (1998b) Model of Titan's ionosphere with detailed hydrocarbon ion chemistry. Planet Space Sci 46:1157–1174

    Article  ADS  Google Scholar 

  • Kliore AJ et al (2004) Cassini radio science. Space Sci Rev 115:1

    Article  ADS  Google Scholar 

  • Kliore AJ, Nagy AF, Marouf EA, French RG, Flasar FM, Rappaport NJ, Anabttawi A, Asmar SW, Kahann DS, Barbinis E, Goltz GL, Fleischman DU, Rochblatt DJ (2008) First results from the Cassini radio occultations of the Titan ionosphere. J Geophys Res 113:A09317

    Article  Google Scholar 

  • Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60 : a new form of carbon. Nature 347:354–358

    Article  ADS  Google Scholar 

  • Krimigis SM et al (2004) Magnetospheric imaging instrument (MIMI) on the Cassini mission to Saturn/Titan. Space Sci Rev 114:233–329

    Article  ADS  Google Scholar 

  • Krimigis SM et al (2005) The dynamic Saturn magnetosphere: first results from Cassini/MIMI. Science 307:1270–1273

    Article  ADS  Google Scholar 

  • Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE (1985) C60: Buckminsterfullerene. Nature 318:162–163

    Article  ADS  Google Scholar 

  • Kroto HW, Allaf AW, Balm SP (1991) C60 : buckminsterfullerene. Chem Rev 91:1213–1235

    Article  Google Scholar 

  • Krupp N, Lagg A, Woch J, Krimigis SM, Livi S, Mitchell DG, Roelof EC, Paranicas C, Mauk BH, Hamilton DC, Armstrong TP, Dougherty MK (2005) The Saturnian plasma sheet as revealed by energetic particle Measurements. Geophys Res Lett 32:L20S03. doi:10.1029/2005GL022829

    Article  Google Scholar 

  • Lammer H, Bauer SJ (1993) Atmospheric mass loss from Titan by sputtering. Planet Space Sci 41:657–663

    Article  ADS  Google Scholar 

  • Lammer H, Stumpter W, Bauer SJ (1998) Dynamic escape of H from Titan as a consequence of sputtering induced heating. Planet Space Sci 46:1207–1213

    Article  ADS  Google Scholar 

  • Lara LM, Lellouch E, López-Moreno JJ, Rodrigo R (1996) Vertical distribution of Titan's atmospheric neutral constituents. J Geophys Res 101:E10, 23,261–23,283

    Article  ADS  Google Scholar 

  • Lavvas PP, Coustenis A, Vardavas IM (2008a) Coupling photochemistry with haze formation in Titan's atmosphere: Part I: model description. Planet Space Sci 56:27–66

    Article  ADS  Google Scholar 

  • Lavvas PP, Coustenis A, Vardavas IM (2008b) Coupling photochemistry with haze formation in Titan's atmosphere, Part II: results and validation with Cassini/Huygens data. Planet Space Sci 56:67–99

    Article  ADS  Google Scholar 

  • Lean JL et al (2003) A new model of solar EUV irradiance variability 2. Comparisons with empirical models and observations and implications for space weather. J Geophys Res 108:A(2), 1059. doi:10.1029/2001JA009238

    Article  Google Scholar 

  • Ledvina SA, Cravens TE, Kecskemety K (2005) Ion distributions in Saturn's magnetosphere near Titan. J Geophys Res Space Phys 110:A06211

    Article  Google Scholar 

  • Liang M-C, Yung YL, Shemansky DE (2007) Photolytically generated aerosols in the mesosphere and thermosphere of Titan. Astrophys J Lett 661:L199–L202

    Article  ADS  Google Scholar 

  • Lipatov AS (2002) The Hybrid multiscale simulation technology. Springer

    Google Scholar 

  • Lipatov A, Sittler EC Jr, Hartle RE (2008) Titan's plasma environment for T9 encounter: 3D hybrid simulation and comparison with observations, 2008 Joint Assembly, P41A-06

    Google Scholar 

  • Lummerzheim D (1987) Electron transport and optical emissions in the aurora. Ph.D. Thesis, University of Alaska, Fairbanks

    Google Scholar 

  • Lummerzheim D, Lilensten J (1994) Electron transport and energy degradation in the ionosphere: evaluation of the numerical solution. Comparison with laboratory experiments and auroral observations. Ann Geophys 12:1039–1051

    ADS  Google Scholar 

  • Lutz B, de Bergh C, Owen T (1983) Titan: discovery of carbon monoxide in its atmosphere. Science 220:1374–1375

    Article  ADS  Google Scholar 

  • Ma Y, Nagy AF, Cravens TE, Sokolov IG, Clark J, Hansen KC (2004) 3-D global model prediction for the first close flyby of Titan by Cassini. Geophys Res Lett 31:L22803. doi:10.1029/2004GL02145

    Article  ADS  Google Scholar 

  • Ma Y, Nagy AF, Cravens TE, Sokolov IV, Hansen KC, Wahlund J-E, Crary FJ, Coates AJ, Dougherty MK (2006) Comparisons between MHD model calculations and observations of Cassini flybys of Titan. J Geophys Res 111:A05207. doi:10.1029/2005JA011481

    Article  Google Scholar 

  • Maurellis AN, Cravens TE, Gladstone GR, Waite Jr JH, Acton LW (2000) Jovian X-ray emission from solar X-ray scattering. Geophys Res Lett 27:1339

    Article  ADS  Google Scholar 

  • Maurice S, Sittler EC Jr, Cooper JF, Mauk BH, Blanc M, Selesnick RS (1996) Comprehensive analysis of electron observations at Saturn: Voyager 1 and 2. J Geophys Res 101:15211–15232

    Article  ADS  Google Scholar 

  • Maurice S, Blanc M, Prange R, Sittler EC Jr (1997) The magnetic-field-aligned polarization electric field and its effects on particle distribution in the magnetospheres of Jupiter and Saturn. Planet Space Sci 45(11):1449–1465

    Article  ADS  Google Scholar 

  • Menietti JD, Groene JB, Averkamp TF, Hospodarsky GB, Kurth WS, Gurnett DA, Zarka P (2007) Influence of Saturnian moons on Saturn kilometric radiation. J Geophys Res 112:A08211. doi:10.1029/2007JA012331

    Article  Google Scholar 

  • Michael M, Johnson RE (2005) Energy deposition of pickup ions and heating of Titan's atmosphere. Planet Space Sci 53:1510–1514

    Article  ADS  Google Scholar 

  • Michael M, Johnson RE, Leblanc F, Liu M, Luhmann JG, Shemantovich VI (2005) Ejection of nitrogen from Titan's atmosphere by magne-tospheric ions and pickup ions. Icarus 175:263–267

    Article  ADS  Google Scholar 

  • Mitchell DG, Brandt PC, Roelof EC, Dandouras J, Krimigis SM, Mauk BH (2005) Energetic neutral atom emissions from Titan Interaction with Saturn's magnetosphere. Science 308:989

    Article  ADS  Google Scholar 

  • Modolo R, Chanteur GM (2008) A global hybrid model for Titan's interaction with the kronian plasma: application to the Cassini Ta flyby. J Geophys Res. doi:10.1029/2007JA012453

    Google Scholar 

  • Modolo R, Wahlund J-E, Bostrom R, Canu P, Kurth , D. Gurnett, Lewis GR, Coates, Far plasma wake of Titan from the RPWS observations: a case study (2007a) Geophys Res Lett 34:L24S04. doi:10.1029/2007GL030482

    Google Scholar 

  • Modolo R, Chanteur GM, Wahlund J-E, Canu P, Kurth WS, GurnettD, Matthews AP, Bertucci C (2007b) Plasma environment in the wake of Titan from hybrid simulation: a case study. Geophys Res Lett 34:L24S07. doi:10.1029/2007GL030489

    Article  Google Scholar 

  • Molina-Cuberos GJ, López-Moreno JJ, Rodrigo R, Lara LM, O'Brien K (1999) Ionization by cosmic rays of the atmosphere of Titan. Planet Space Sci 47:1347–1354

    Article  ADS  Google Scholar 

  • Molina-Cuberosa GJ, Lammer H, Stumptner W, Schwingenschuh K, Rucker HO, López-Moreno JJ, Rodrigo R, Tokano T (2001) Ionospheric layer induced by meteoric ionization in Titan's atmosphere. Planet Space Sci 49:143–153

    Article  ADS  Google Scholar 

  • Moustefaoui T, Rebrion-Rowe C, Jean-Luc Le Garrec, Rowe BR, Mitchell JBA (1998) Low temperature electron attachment to poly-cyclic aromatic hydrocarbons. Faraday Discuss 109:71–82

    Article  ADS  Google Scholar 

  • Müller-Wodarg ICF, Yelle RV, Mendillo MJ, Aylward AD (2003) On the global distribution of neutral gases in Titan's upper atmosphere and its effect on the thermal structure. J Geophys Res 108:1453. doi:10.1029/2003JA010054

    Article  Google Scholar 

  • Nagy AF, Banks PM (1970) Photoelectron fluxes in the ionosphere. J Geophys Res 75:6260–6270

    Article  ADS  Google Scholar 

  • Nagy AF, Cravens TE (2002) Solar system ionospheres. In: Mendillo M, Nagy AF, Waite JH (eds) Atmospheres in the solar system: comparative aeronomy, geophys. monograph, vol 130. AGU, Washington DC, pp 39–54

    Google Scholar 

  • Ness NF, Acuna MH, Lepping RP, Connerney JEP, Behannon KW, Burlaga LF, Neubauer FM (1981) Magnetic field studies by Voyager 1: preliminary results at Saturn. Science 212:211

    Article  ADS  Google Scholar 

  • Ness NF, Acuna MH, Behannon KW et al (1982) The induced magnetosphere of Titan. J Geophys Res Space Phys 87:1369–1381

    Article  ADS  Google Scholar 

  • Neubauer FM, Gurnett DA, ScudderJD, Hartle RE (1984) Titan's mag-netospheric interaction. In: Gehrels T, Matthews MS (eds) Saturn, pp 760–787. University of Arizona Press, Tucson

    Google Scholar 

  • Neubauer FM et al (2006) Titan's near magnetotail from magnetic field and electron plasma observations and modeling: Cassini flybys, TA, TB and T3. J Geophys Res 111:A10220. doi:10.1029/2006JA011676

    Article  ADS  Google Scholar 

  • Niemann HB et al (2005) The abundance of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe. Nature. doi:10.1038/nature04122

    Google Scholar 

  • O'Brien K (1969) Extra-nuclear hadron cascade calculation using Passow's approximation. Nucl Instrum Methods 72:93–98

    Article  ADS  Google Scholar 

  • O'Brien K (1970) Calculated cosmic ray ionization in the lower ionosphere. J Geophys Res 75:4357–4359

    Article  ADS  Google Scholar 

  • O'Brien K (1971) Cosmic-ray propagation in the atmosphere. Nuovo Cimento 3A:521–547

    ADS  Google Scholar 

  • O'Brien K (1972) Propagation of muons underground and the primary cosmic ray spectrum below 40 TeV. Phys Rev D5:597–605

    ADS  Google Scholar 

  • O'Brien K, McLaughlin JE (1970) Calculation of dose and dose-equivalent rates to man in the atmosphere from galactic cosmic rays. Hasl-228. Health and Safety Laboratories, U.S Atomic Energy Commission, New York

    Google Scholar 

  • Oran ES, Julienne PS, Strobel DF (1975) The aeronomy of odd nitrogen in the thermosphere. J Geophys Res 80:3068–3076

    Article  ADS  Google Scholar 

  • Parker EN (1958) Dynamics of the interplanetary gas and magnetic fields. Astrophysical J 128:664–676

    Article  ADS  Google Scholar 

  • Postberg F, Kempf S, Hillier JK, Srama R, Green SF, McBride N, Grün E (2008) The E-ring in the vicinity of Enceladus II. Probing the moon's interior — the composition of E-ring particles. Icarus 193:438–454

    Article  ADS  Google Scholar 

  • Raulin F, Owen TC (2003) Organic chemistry and exobiology on Titan. Space Sci Rev 104:377–394

    Article  ADS  Google Scholar 

  • Rees MH (1963) Physics and chemistry of the upper atmosphere. Cambridge University Press, Cambridge

    Google Scholar 

  • Richter, H. and J. B. Howard, Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways, Progress in Energy and Combustion Science, 26, 565– 608, 2000.

    Article  Google Scholar 

  • Roe HG, de Pater I, MacIntosh BA, McKay CP (2002) Titan's clouds from Gemini and Keck adaptive optics imaging. Astrophys J 581:1399–1406

    Article  ADS  Google Scholar 

  • Sagan C, Khare BN (1979) Tholins – organic chemistry of interstellar grains and gas. Nature 277:102–107

    Article  ADS  Google Scholar 

  • Samuelson RE, Maguire WC, Hanel RA, Kunde VG, Jennings DE, Yung Y-L, Aikin AC (1983) CO 2 on Titan. J Geophys Res 88:8709

    Article  ADS  Google Scholar 

  • Shemansky DE, and Hall DT (1992) The distribution of atomic hydrogen in the magnetosphere of Saturn, J. Geophys. Res ., 97 , 4143–4161

    Article  ADS  Google Scholar 

  • Shemansky DE, Stewart AIF, West RA, Esposito LW, Hallett JT, Liu XM (2005) Science 308:978

    Article  ADS  Google Scholar 

  • Shemansky DE, Liang M, Yung Y (2008) Titan atmospheric structure from 2000 km to 300 km: models compared to Cassini UVIS observations. Presented at Titan after Cassini-Huygens symposium. Corpus Christi, Texas, 6–11 July 2008

    Google Scholar 

  • Shemansky, DE, X. Liu and H. Melin (2009) The Saturn hydrogen plume, Planet. Space Sci ., in press

    Google Scholar 

  • Shemantovich VI (1998) Kinetic modeling of suprathermal nitrogen atoms in the Titan's atmosphere: I. Sources. Solar System Res 32:384

    ADS  Google Scholar 

  • Shemantovich VI (1999) Kinetic modeling of suprathermal nitrogen atoms in the Titan's atmosphere: II. Escape flux due to dissociation processes. Solar System Res 33:32

    ADS  Google Scholar 

  • Shemantovich VI, Tully C, Johnson RE (2001) Suprathermal nitrogen atoms and molecules in Titan's corona. Adv Space Res 27:1875–1880

    Article  ADS  Google Scholar 

  • Shemantovich VI, Johnson RE, Michael M, Luhmann JG (2003) Nitrogen loss from Titan. J Geophys Res 108:E085087, E6, 1–11

    Google Scholar 

  • Sillanpaa I, Kallio E, Janhunen P, Schmidt W, Mursula J Vilpolla, Tanskanen P (2006) Hybrid simulation study of ion escape at Titan for different orbital positions. Adv Space Res 38:799–805

    Article  ADS  Google Scholar 

  • Sittler EC Jr, Andre N, Blanc M, Burger M, Johnson RE, Coates A, Rymer A, Reisenfeld D, Thomsen MF, Persoon A, Dougherty M, Smith HT, Baragiola RA, Hartle RE, Chornay D, Shappirio MD, Simpson DG, McComas DJ, Young DT (2008) Ion and neutral sources and sinks within Saturn's inner magnetosphere: Cassini results, PSS, 56:3–18

    Google Scholar 

  • Sittler EC Jr, Hartle RE (1996) Triton's ionospheric source: electron precipitation or photoionization. J Geophys Res 101:10,863

    Article  ADS  Google Scholar 

  • Sittler EC Jr, Ogilvie KW, Scudder JD (1983) Survey of low energy plasma electrons in Saturn's magnetosphere: Voyager 1 and 2. J Geophys Res 88:8847

    Article  ADS  Google Scholar 

  • Sittler EC Jr, Hartle RE, Vinas AF, Johnson RE, Smith HT, Mueller-Wodarg I (2004) Titan interaction with Saturn's magnetosphere: mass loading and ionopause location. In: Proceedings of the international conference TITAN from discovery to encounter. ESA Special Publication 1278, p 377, ESTEC. Noordwijk, Netherlands

    Google Scholar 

  • Sittler EC Jr, Hartle RE, Vinas AF, Johnson RE, Smith HT, Mueller-Wodarg I (2005a) Titan interaction with Saturn's magnetosphere: Voyager 1 results revisited. J Geophys Res 110:A09302. doi:10.1029/2004JA010759

    Article  Google Scholar 

  • Sittler EC Jr, Thomsen M, Chornay D, Shappirio MD, Simpson D, Johnson RE, Smith HT, Coates AJ, Rymer AM, Crary F, McComas DJ, Young DT, Reisenfeld D, Dougherty M, Andre N (2005b) Preliminary results on Saturn's inner plasmasphere as observed by Cassini: comparison with Voyager. Geophys Res Lett 32:L14S07. doi:10.1029/2005GL022653

    Article  Google Scholar 

  • Sittler EC Jr, Johnson RE, Smith HT, Richardson JD, Jurac S, Moore M, Cooper JF, Mauk BH, Michael M, Paranicus C, Armstrong TP, Tsurutani B (2006a) Energetic nitrogen ions within the inner magnetosphere of Saturn. J Geophys Res 111:A09223. doi:10.1029/2004JA010509

    Article  Google Scholar 

  • Sittler EC Jr et al (2006b) Cassini observations of Saturn's inner plas-masphere: Saturn orbit insertion results. Planet Space Sci 54

    Google Scholar 

  • Sittler EC Jr, Ali A, Cooper JF, Hartle RE, Johnson RE, Coates AJ, Young DT (2009a) Heavy ion formation in Titan's ionosphere: mag-netospheric introduction of free oxygen and source of Titan's searo-sols? Planet Space Sci, in press

    Google Scholar 

  • Sittler EC Jr, Hartle RE, Cooper JF, Lipatov AS, Johnson RE, Bertucci C, Coates AJ, Szego K, Shappirio M, Simpson DG, Tokar R, Young DT (2009b) Saturn's magnetosphere and properties of upstream flow at Titan: preliminary results. Planet Space Sci (submitted)

    Google Scholar 

  • Sittler EC Jr, Hartle RE, Lipatov AS, Cooper JF, Bertucci C, Coates AJ, Szego K, Johnson RE, Shappirio M, Simpson DG, Wahlund J-E (2009c) Saturn's magnetospheric interaction with Titan as defined by Cassini encounters T9 and T18: new results. Planet Space Sci (submitted)

    Google Scholar 

  • Smith HT, Johnson RE, Shemantovich V (2004) Titan's atomic and molecular nitrogen tori. Geophys Res Lett 31:l16804. doi:10.1029/2004GL020580

    Article  ADS  Google Scholar 

  • Smith HT, Shappirio M, Sittler EC, Reisenfeld D, Johnson RE, Baragiola RA, Crary FJ, McComas DJ, Young DT (2005) Discovery of nitrogen in Saturn's inner magnetosphere. Geophys Res Lett 32:L14S03. doi:10.1029/2005GL022654

    Article  Google Scholar 

  • Smith HT, Mitchell D, Johnson RE, Paranicus C (2009) Energetic particle deposition in Titan's atmosphere, presented at Titan after Cassini-Huygens symposium. Corpus Christi, Texas, 6–11 July 2008

    Google Scholar 

  • Smith HT, Mitchell DG, Johnson RE, Paranicas CP (2009) Investigation of energetic proton penetration in Titan's atmosphere using the Cassini INCA instrument. Planet. Space Sci doi:10.1016/j. pss.2009.03.013

    Google Scholar 

  • Spahn F, Albers N, Hörning M, Kempf S, Krivov AV, Makuch M, Schmidt J, Seiβ M, Sremcevic M (2006a) E ring dust sources: Implications from Cassini's dust measurements. Planet Space Sci 54:1024–1032

    Article  ADS  Google Scholar 

  • Spahn F et al (2006b) Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science 311:1416–1418

    Article  ADS  Google Scholar 

  • Srama R, Kempf S, Moragas-Klostermeyer G, Helfert S, Ahrens TJ, Altobelli N, Auer S, Beckmann U, Bradley JG, Burton M, Dikarev VV, Economou T, Fechtig H, Green SF, Grande M, Havnes O, Hillier JK, Horanyi M, Igenbergs E, Jessberger EK, Johnson T V, Krüger H, Matt G, McBride N, Mocker A, Lamy P, Linkert D, Linkert G, Lura F, McDonnell JAM, Möhlmann D, Morfill GE, Postberg F, Roy M, Schwehm GH, Spahn F, Svestka J, Tschernjawski V, Tuzzolino AJ, Wäsch R, Grün E (2006) In situ dust measurements in the inner Saturnian system. Planet Space Sci 54:967–987

    Article  ADS  Google Scholar 

  • Stevens M (2001) The EUV airglow of Titan: production and loss of NB2B c'B4B (0)-X. J Geophys Res 106:3685

    Article  MathSciNet  ADS  Google Scholar 

  • Strobel DF (2008) Titan's hydrodynamically escaping atmosphere. Icarus 193:588–594

    Article  ADS  Google Scholar 

  • Strobel DF, Shemansky DE (1982) EUV emission from Titan's upper atmosphere: Voyager 1 encounter. J Geophys Res 87:1361–1368

    Article  ADS  Google Scholar 

  • Strobel DF, Summers ME, Zhu X (1992) Titan's upper atmosphere: structure and ultraviolet emissions. Icarus 100:512–526

    Article  ADS  Google Scholar 

  • Szego K et al (2005) The global plasma environment of Titan as observed by Cassini plasma spectrometer during the first two close encounters with Titan. Geophys Res Lett 32:L20S05. doi:10.1029/2005GL022646

    Article  Google Scholar 

  • Szego K, Bebesi Z, Bertucci C, Coates AJ, Crary F, Erdos G, Hartle R, Sittler EC Jr, Young DT (2007) Charged particle environment of titan during the T9 flyby. Geophys Res Lett 34:L24S03. doi:10.1029/2007GL030677

    Article  Google Scholar 

  • Thaddeus P (1994) On the large organic molecules in the interstellar gas, Molecules and Grains in Space, AIP Conference Proceedings 312, Mont Sainte-Odile, France 1993, editor Irene Nenner , 711–731

    Google Scholar 

  • Thaddeus P (1995) Carbon chains and the diffuse interstellar bands, A.G.G.M. Tielens and T.P. Snow (eds.), The Diffuse Interstellar Bands, Kluwer Academic Publishers, Printed in the Netherlands , 369–378

    Google Scholar 

  • Tobisca WK, Eparvier FG (1998) EUV97: improvements to EUV irra-diance modeling in the soft X rays and FUV. Solar Phys 177:147

    Article  ADS  Google Scholar 

  • Tobisca WK, Woods T, Eparvier FG, Viereck R, Floyd L, Bouwer D, Rottman G, White OR (2000) The SOLAR2000 empirical solar irra-diance model and forecast tool. J Atmos Sol Terr Phys 62(14):1233

    Article  ADS  Google Scholar 

  • Tomasko M et al (2005) Rain, winds and haze during Huygens probe's descent to Titan's surface. Nature 438(8):765–778

    Article  ADS  Google Scholar 

  • Toublanc D, Parisot JP, Gautier D, Raulin F, McKay CP (1995) Photochemical modeling of Titan's atmosphere. Icarus 113:2

    Article  ADS  Google Scholar 

  • Tucker OJ, Johnson RE (2008) A DSMC model of heating in Titan's upper atmosphere. Presented at Titan after Cassini-Huygens symposium. Corpus Christi, Texas, 6–11 July 2008

    Google Scholar 

  • Vuitton V, Yelle RV, Anicich VG (2006) The nitrogen chemistry of Titan's upper atmosphere revealed. The Astrophys J 647:L175–L178

    Article  ADS  Google Scholar 

  • Vuitton V, Yelle RV, McEwan MJ (2007) Ion chemistry and N-containing molecules in Titan's upper atmosphere. Icarus 191:722–742

    Article  ADS  Google Scholar 

  • Vuitton V, Yelle RV, Lavvas P (2009) Composition and chemistry of Titan's thermosphere and ionosphere. Phil Trans R Soc A 367:729–741

    Article  ADS  Google Scholar 

  • Wahlund J-E, Bostrom R, Gustafsson G, Gurnett DA, Kurth WS, Pedersen A, Averkamp TF, Hospodarsky GB, Persoon AM, Canu P, Neubauer FM, Dougherty MK, Eriksson AI, Morooka MW, Gill R, Andre M, Eliasson L, Muller-Wodarg I (2005) Cassini measurements of cold plasma in the ionosphere of Titan. Science 308:986–989

    Article  ADS  Google Scholar 

  • Waite JH et al (2004) The Cassini ion and neutral mass spectrometer (INMS) Investigation. Space Sci Rev 114:113–231

    Article  ADS  Google Scholar 

  • Waite JH et al (2005) Ion neutral mass spectrometer results from the first flyby of Titan. Science 308:982–986

    Article  ADS  Google Scholar 

  • Waite JH Jr, Young DT, Cravens TE, Coates AJ, Crary FJ, Magee B, Westlake J (2007) The Process of Tholin Formation in Titan's Upper Atmosphere. Science 316:870 (11 May 2007). doi:10.1126/ science.1139727

    Article  ADS  Google Scholar 

  • Waite JH Jr, Young DT, Coates AJ, Crary FJ, Magee BA, Mandt KE, Westlake JH (2008) The source of heavy organics and aerosols in Titan's atmosphere, submitted to organic matter in space. Proceedings IAU Symposium No. 251

    Google Scholar 

  • Wang S, Buseck PR (1991) Packing of C60 molecules and related fullerenes in crystals — a direct view. Chem Phys Lett 182:1

    Article  ADS  Google Scholar 

  • Wei HY, Russell CT, Wahlund J-E, Dougherty MK, Bertucci C, Modolo R, Ma YJ, Neubauer FM (2007) Cold ionospheric plasma in Titan's magnetotail. Geophys Res Lett 34:L24S06. doi:10.1029/2007GL030701

    Article  Google Scholar 

  • Weiske T, Bohme DK, Schwarz H (1991) Injection of helium atoms into doubly and triply charged C60 cations. J Phys Chem 95:8451–8452

    Article  Google Scholar 

  • Wilson EH, Atreya SK (2004) Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere. J Geophys Res 109:E06002. doi:10.1029/2003JE002181

    Article  Google Scholar 

  • Wong A-S, Morgan CG, Yung YL, Owen T (2002) Evolution of CO on Titan. Icarus 155:382–392. doi:10.1006/icar.2001.6720

    Article  ADS  Google Scholar 

  • Yang SH, Pettiette CL, Conceicao J, Cheshnovsky O, Smalley RE (1987). Chem Phys Lett 139:233

    Article  ADS  Google Scholar 

  • Yelle RV (1991) Non-LTE models of Titan's upper atmosphere. Astrophys J 383:380–400

    Article  ADS  Google Scholar 

  • Yelle RG, Borggren N, de la Haye V, Kasprzak WT, Niemann HB, Muller-Wodarg I, Waite JH Jr (2006) The vertical structure of Titan's upper atmosphere from Cassin ion neutral mass spectrometer measurements. Icarus 182:567–576

    Article  ADS  Google Scholar 

  • Yelle RV, Cui J, Müller-Wodarg ICF (2008) Methane escape from Titan's atmosphere. J Geophys Res, 113:E10003. doi:10.1029/2007JE003031

    Article  ADS  Google Scholar 

  • Young DT et al (2004) Cassini plasma spectrometer investigation. Space Sci Rev 114:1–112

    Article  ADS  Google Scholar 

  • Young DT et al (2005) Composition and dynamics of plasma in Saturn's magnetosphere. Science 307:1262

    Article  ADS  Google Scholar 

  • Yung YL (1987) An update of nitrile photochemistry on Titan. Icarus 72:468

    Article  ADS  Google Scholar 

  • Yung YL, Allen M, Pinto JP (1984) Photochemistry of the atmosphere of Titan: comparison between model and observations. Astrophys J Suppl 55:465

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge assistance by Joseph Ajello with regard to the section on UVIS observations at Titan. Robert Kilgore from TRAX International Corporation at Goddard Space Flight Center performed all the graphic arts suppert for the chapter's figures. Work at GSFC is supported by the Cassini Program under JPL Contract 1243218 with SwRI. Additional support at GSFC is provided by NASA's Cassini Data Analysis Program (CDAP).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sittler, E.C. et al. (2009). Energy Deposition Processes in Titan's Upper Atmosphere and Its Induced Magnetosphere. In: Brown, R.H., Lebreton, JP., Waite, J.H. (eds) Titan from Cassini-Huygens. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9215-2_16

Download citation

Publish with us

Policies and ethics