Future Research Requirements for Understanding the Effects of Climate Variability on Fisheries for Their Management

  • Franklin B. Schwing
  • William T. Peterson
  • Ned Cyr
  • Kenric E. Osgood
Part of the Fish & Fisheries Series book series (FIFI, volume 31)

Climate variability is a key factor controlling the distribution and abundance of marine organisms and ecosystems structure. Climate science must be linked to ecosystem science and living marine resource management if we are to understand, quantify, and forecast the impacts of climate variability and future climate change on marine populations and ecosystem components. To effectively understand and incorporate into management the effects of climate variability on fisheries, we will need to expand greatly our capabilities in a number of research activities. Ecological observations must be maintained and enhanced to detect and increase our understanding of the impacts of climate variability and climate change on marine ecosystems. Climate-forced biophysical models must be developed and verified to increase understanding of ecosystem responses to climate and provide predictions to assist management. Ecological indicators that document ecosystem change and the impacts of climate variability on marine ecosystems must be developed and made operational. Regular assessments of ecosystem status must be prepared, distributed, and interpreted. Finally, climate information must be integrated into fisheries management plans and decisions. We recommend a series of initial priority activities, which include regional “proof of concept” demonstration projects for linking climate information with resource management; developing ecological indicators that document the state of, and impacts of climate variability on, marine populations and their ecosystems; and creating web-based and dynamic regional integrated ecosystem assessments (IEAs).


Climate change fisheries management ecosystem-based management ecological indicators ecological assessments physical-biological models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, P. J. and J. F. Piatt. 1999. Community reorganization in the Gulf of Alaska following ocean climate regime shift. Mar. Ecol. Prog. Ser. 189: 117–123.CrossRefGoogle Scholar
  2. Benson, A. J. and A. W. Trites.. Ecological effects of regime shifts in the Bering Sea and eastern North Pacific Ocean. Fish Fisheries 3: 95–113.Google Scholar
  3. Brodeur, F. D., S. Ralston, R. L. Emmett, M. Trudel, T. D. Auth, and A. J. Phillips. 2006. Anomalous pelagic nekton abundance, distribution, and apparent recruitment in the northern California Current in 2004 and 2005. Geophys. Res. Lett. 33: L22S08, doi:10.1029/2006GL026614.CrossRefGoogle Scholar
  4. Chavez, F. P., J. Ryan, S. E. Lluch-Cota, and M. Ñiquen C. 2003. From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science 299: 217–221.PubMedCrossRefGoogle Scholar
  5. DFO, 2006. State of the Pacific Ocean 2005. DFO Science Ocean Status Report. 2006/001.Google Scholar
  6. Drinkwater, K. F. 2002. A review of the role of climate variability in the decline of northern cod. Am. Fish. Soc. Symp. 32: 113–130.Google Scholar
  7. Drinkwater, K. F., A. Belgrano, A. Borja, A. Conversi, M. Edwards, C. H. Greene, G. Ottersen, A. J. Pershing, and H. Walker. 2003. The response of marine ecosystems to climate variability associated with the North Atlantic Oscillation. In: The North Atlantic Oscillation: Climate Significance and Environmental Impacts, Amrican Geophysical Union, Geophys. Mono. 134: 211–234.Google Scholar
  8. Field, J. and R. Francis. 2006. Considering ecosystem-based fisheries management in the California Current. Mar. Policy 30: 552–569.CrossRefGoogle Scholar
  9. Francis, R. C. and S. R. Hare. 1994. Decadal-scale regime shifts in the large marine ecosystems of the Northeast Pacific: a case for historical science. Fish. Oceanogr. 3: 279–291.CrossRefGoogle Scholar
  10. Hooff, R. C. and W. T. Peterson. 2006. Recent increases in copepod biodiversity as an indicator of changes in ocean and climate conditions in the northern California Current ecosystem. Limnol. Oceanogr. 51: 2042–2051Google Scholar
  11. Mackas, D. L., W. T. Peterson, M. D. Ohman, and B. E. Lanviegos. 2006. Zooplankton anomalies in the California Current system before and during the warm ocean conditions of 2005. Geophys. Res. Lett. 33: L22S07, doi:10.1029/2006GL027930.CrossRefGoogle Scholar
  12. Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis. 1997. A Pacific inter-decadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78: 1069–1079.CrossRefGoogle Scholar
  13. Murawski, S. A. 1993. Climate change and marine fish distributions: forecasting from historical analogy. Trans. Am. Fish. Soc. 122: 647–658.CrossRefGoogle Scholar
  14. North Pacific Fishery Management Council (NPFMC). 2006. Stock Assessment and Fishery Evaluation (SAFE) Document for the BSAI and GOA. Appendix C: Ecosystem Considerations for 2007 (J. Boldt, ed.). North Pacific Fishery Management Council, Anchorage, AK.Google Scholar
  15. Parker, R. O., Jr. and R. L. Dixon. 1998. Changes in a North Carolina reef fish community after 15 years of intense fishing — global warming implications. Trans. Am. Fish. Soc. 127: 908–920.CrossRefGoogle Scholar
  16. Pearcy, W. G. and A. Schoener. 1987. Changes in the marine biota coincident with the El Niño in the northeastern subarctic Pacific. J. Geophys. Res. 92: 14417–14428.CrossRefGoogle Scholar
  17. Perry, A. L., P. J. Low, J. R. Ellis, and J. D. Reynolds. 2005. Climate change and distribution shifts in marine fishes. Science 308: 1912–1915.PubMedCrossRefGoogle Scholar
  18. Peterson, W. T. and F. B. Schwing. 2003. A new climate regime in northeast pacific ecosystems. Geophys. Res. Lett. 30(17): 1896, doi:10.1029/2003GL017528.Google Scholar
  19. Schwing, F. B., N. A. Bond, S. J. Bograd, T. Mitchell, M. A. Alexander, and N. Mantua. 2006. Delayed coastal upwelling along the US West Coast in 2005: a historical perspective. Geophys. Res. Lett. 33: L22S01, doi:10.1029/2006GL026911.CrossRefGoogle Scholar
  20. Sydeman, W. J., R. W. Bradley, P. Warzybok, C. L. Abraham, J. Jahncke, K. D. Hyrenbach, V. Kousky, J. M. Hipfner, and M. D. Ohman. 2006. Planktivorous auklet (Ptychoramphus aleuticus) responses to the anomaly of 2005 in the California Current. Geophys. Res. Lett. 33: L22S09, doi:10.1029/2006GL026736.CrossRefGoogle Scholar
  21. Weinberg, J. R. 2005. Bathymetric shift in the distribution of Atlantic surfclams: response to warmer ocean temperature. ICES J. Mar. Sci. 62: 1444–1453.CrossRefGoogle Scholar
  22. Wiese, M. J., D. P. Costa, and R. M. Kudela. 2006. At-sea movement and diving behavior of male California sea lion (Zalophus californianus) during 2004 and 2005. Geophys. Res. Lett. 33: L22S10, doi:10.1029/2006GL027113.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Franklin B. Schwing
    • 1
  • William T. Peterson
    • 2
  • Ned Cyr
    • 3
  • Kenric E. Osgood
    • 3
  1. 1.Environmental Research DivisionNOAA Fisheries Service, Southwest Fisheries Science CenterPacific GroveUSA
  2. 2.Hatfield Marine Science CenterNOAA Fisheries Service, Northwest Fisheries Science CenterNewportUSA
  3. 3.NOAA Fisheries Service, Office of Science & TechnologySilver SpringUSA

Personalised recommendations