Skip to main content

Acoustic Methods: Brief Review and Prospects for Advancing Fisheries Research

  • Chapter
The Future of Fisheries Science in North America

Part of the book series: Fish & Fisheries Series ((FIFI,volume 31))

Acoustic methods are widely used in fisheries research, often providing vital information that can be obtained in no other way. In reviewing active methods, phenomena of sound scattering are first described. The means of ensonification and detection, the generic sonar, is described. Examples include the traditional scientific echo sounder and the following six classes of sonar: multibeam, sidescan, acoustic lens-based, parametric, synthetic aperture, and conventional low-frequency sonars. Methods of data processing, quantification, and data interpretation are addressed. In reviewing passive methods, sounds produced by organisms are exemplified. The traditional means of detecting sound, the hydrophone, is then described together with various configurations of hydrophones. Methods of data analysis and classification are outlined. Calibration is addressed separately for sonars and hydrophones. Applications of the various methods are cited. Potential applications of new, improved, or refined acoustic methods to outstanding problems in fisheries and fisheries habitat research are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Altes RA (1980) Detection, estimation, and classification with spectrograms. J Acoust Soc Am 67:1232–1246

    Google Scholar 

  • Altes RA, Moore PWB (1997) Bionic synthetic aperture sonar. J Acoust Soc Am 102:3123

    Google Scholar 

  • Andersen LN, Berg S, Gammelsæter OB, Lunde EB (2006) New scientific multibeam systems (ME70 and MS70) for fishery research applications. J Acoust Soc Am 120:3017

    Google Scholar 

  • Au WWL (1993) The sonar of dolphins. Springer, New York

    Google Scholar 

  • Axelsen BE, Anker-Nilssen T, Fossum P, Kvamme C, Nøttestad L (2001) Pretty patterns but a simple strategy: predator-prey interactions between juvenile herring and Atlantic puffins observed with multibeam sonar. Can J Zool 79:1586–1596

    Google Scholar 

  • Bailey RS, Simmonds EJ (1990) The use of acoustic surveys in the assessment of the North Sea herring stock and a comparison with other methods. Rapp P-v Rèun Cons Int Explor Mer 189:9–17

    Google Scholar 

  • Baldridge HD (1970) Sinking factors and average densities of Florida sharks as functions of liver buoyancy. Copeia 1970:744–754

    Google Scholar 

  • Barans CA, Holliday DV (1983) A practical technique for assessing some snapper/grouper stocks. Bull Mar Sci 33:176–181

    Google Scholar 

  • Belcher EO, Fox WLJ, Hanot WH (2002) Dual-frequency acoustic camera: a candidate for an obstacle avoidance, gap-filler, and identification sensor for untethered underwater vehicles. In: Proceedings of the MTS/IEEE Oceans 2002 Conference, Biloxi, MS, pp 1234–1238

    Google Scholar 

  • Benoit-Bird K, Au W (2003) Hawaiian spinner dolphins aggregate midwater food resources through cooperative foraging. J Acoust Soc Am 114:2300

    Google Scholar 

  • Beyer RT (1974) Nonlinear acoustics. Naval Ship Systems Command, Washington, DC

    Google Scholar 

  • Bobber RJ (1970) Underwater electroacoustic measurements. Naval Research Laboratory, Washington, DC

    Google Scholar 

  • Belcher EO (2007) Vision in turbid water. In: Proceedings of MTS/ADCI Underwater Intervention 2007 Conference, New Orleans, LA, 5 pp

    Google Scholar 

  • Bone Q (1972) Buoyancy and hydrodynamic functions of integument in the castor oil fish, Ruvettus pretiousus (Pisces: Gempylidae). Copeia 1972:75–87

    Google Scholar 

  • Brede R, Kristensen FH, Solli H, Ona E (1990) Target tracking with a split-beam echo sounder. Rapp P-v Rèun Cons Int Explor Mer 189:254–263

    Google Scholar 

  • Burwen D, Maxwell S, Pfisterer C (2004) Investigations into the application of a new sonar system for assessing fish passage in Alaskan rivers. J Acoust Soc Am 115:2547

    Google Scholar 

  • Chu D, Stanton TK (1998) Application of pulse compression techniques to broadband acoustic scattering by live individual zooplankton. J Acoust Soc Am 104:39–55

    Google Scholar 

  • Clark CW (1980) A real-time direction finding device for determining the bearing to the underwater sounds of southern right whales, Eubalaena australis. J Acoust Soc Am 68:508–511

    Google Scholar 

  • Clark CW, Ellison WT (1988) Numbers and distributions of bowhead whales, Balaena mysticetus, based on the 1985 acoustic study off Pt. Barrow, Alaska. Rep Int Whal Commn 38:365–370

    Google Scholar 

  • Clark CW, Ellison WT (2000) Calibration and comparison of the acoustic location methods used during the spring migration of the bowhead whale, Balaena mysticetus, off Pt. Barrow, Alaska, 1984–1993. J Acoust Soc Am 107:3509–3517

    CAS  Google Scholar 

  • Clark CW, Johnson JH (1984) The sounds of the bowhead whale, Balaena mysticetus, during the spring migrations of 1979 and 1980. Can J Zool 62:1436–1441

    Google Scholar 

  • Clark CW, Ellison WT, Beeman K (1986) Acoustic tracking of migrating bowhead whales. In: Proceedings of the MTS/IEEE Oceans Conference 1986, pp 341–346

    Google Scholar 

  • Clark CW, Marler P, Beeman K (1987) Quantitative analysis of animal vocal phonology: an application to swamp sparrow song. Ethology 76:101–115

    Google Scholar 

  • Clay CS, Heist BG (1984) Acoustic scattering by fish - acoustic models and a two-parameter fit. J Acoust Soc Am 75:1077–1083

    Google Scholar 

  • Clay CS, Medwin H (1977) Acoustical oceanography: principles and applications. Wiley, New York

    Google Scholar 

  • Cummings WC, Thompson PO, Ha SJ (1986) Sounds from Bryde, Balaenoptera edeni, and finback, B. physalus, whales in the Gulf of California. Fish Bull 84:359–370

    PubMed  CAS  Google Scholar 

  • Cummings WC, Thompson PO, Ha SJ (1986) Sounds from Bryde, Balaenoptera edeni, and finback, B. physalus, whales in the Gulf of California. Fish Bull 84:359–370

    Google Scholar 

  • Deecke VB, Ford JKB, Spong P (1999) Quantifying complex patterns of bioacoustic variation: use of a neural network to compare killer whale (Orcinus orca) dialects. J Acoust Soc Am 105:2499–2507

    PubMed  CAS  Google Scholar 

  • Diachok O (1999) Effects of absorptivity due to fish on transmission loss in shallow water. J Acoust Soc Am 105:2107–2128

    Google Scholar 

  • Diachok O (2000) Absorption spectroscopy: a new approach to estimation of biomass. Fish Res 47:231–244

    Google Scholar 

  • Dossot GA, Miller JH, Potty GR, Morre KA, Holmes JD, Lynch JF (2007) Acoustic measurements in shallow water using an ocean glider. J Acoust Soc Am 121:3108

    Google Scholar 

  • Dunn JL (1969) Airborne measurements of the acoustic characteristics of a sperm whale. J Acoust Soc Am 46:1052–1054

    Google Scholar 

  • Dunning DJ, Ross QE, Geoghegan P, Reichle JJ, Menezes JK, Watson JK (1992) Alewives avoid high-frequency sound. N Am J Fish Manage 12:407–416

    Google Scholar 

  • Dybedal J (1993) TOPAS: parametric end-fire array used in offshore applications. In: Hobaek H (ed) Advances in nonlinear acoustics. World Scientific, Singapore, pp 264–275

    Google Scholar 

  • Edds PL (1988) Characteristics of finback Balaenoptera physalus vocalizations in the St. Lawrence Estuary. Bioacoustics 1:131–149

    Google Scholar 

  • Ehrenberg JE (1974) Two applications for a dual-beam transducer in hydroacoustic fish assessment systems. Proc IEEE Conf Eng Ocean Environ 1:152–154

    Google Scholar 

  • Ehrenberg JE (1979) A comparative analysis of in situ methods for directly measuring the acoustic target strength of indivudual fish. IEEE J Ocean Eng 4:141–152

    Google Scholar 

  • Everbach EC (1997) Parameters of nonlinearity of acoustic media. In: Crocker MJ (ed) Encyclopedia of acoustics. Vo l 1. Wiley, New York, pp 219–226

    Google Scholar 

  • Ezerskii AB, Selivanovskii DA (1987) Backscattering of sound by the hydrodynamic wakes of marine animals. Sov Phys Acoust 33:370–372

    Google Scholar 

  • Fish JP, Carr HA (1990) Sound underwater images, a guide to the generation and interpretation of side scan sonar data. 2nd edn. Lower Cape Publishing, Orleans, MA

    Google Scholar 

  • Fish JP, Carr HA (2001) Sound reflections, advanced applications of side scan sonar. Lower Cape Publishing, Orleans, MA

    Google Scholar 

  • Fish MP, Mowbray WH (1970) Sounds of western north Atlantic fishes: a reference file of biological underwater sounds. Johns Hopkins Press, Baltimore, MD

    Google Scholar 

  • Folds DL, Hanlin J (1975) Focusing properties of a solid four-element ultrasonic lens. J Acoust Soc Am 58:72–77

    Google Scholar 

  • Foote KG (1982) Optimizing copper spheres for precision calibration of hydroacoustic equipment. J Acoust Soc Am 71:742–747

    Google Scholar 

  • Foote KG (1991a) Acoustic sampling volume. J Acoust Soc Am 90:959–964

    Google Scholar 

  • Foote KG (1991b) Summary of methods for determining fish target strength at ultrasonic frequencies. ICES J Mar Sci 48:211–217

    Google Scholar 

  • Foote, KG (1998) Broadband acoustic scattering signatures of fish and zooplankton (BASS). In: Proceedings of the Third European Marine Science Technology Conference, Lisbon, Portugal, 23–27 May 1998. Vol 3, pp 1011–1025

    Google Scholar 

  • Foote KG (2000) Standard-target calibration of broadband sonars. J Acoust Soc Am 108:2484

    Google Scholar 

  • Foote KG, Knudsen HP (1994) Physical measurement with modern echo integrators. J Acoust Soc Jpn (E) 15:393–395

    Google Scholar 

  • Foote KG, Stanton TK (2000) Acoustical methods. In: Harris RP, Wiebe PH, Lenz J, Skjoldal HR, Huntley M (eds) ICES Zooplankton Methodology Manual. Academic, London, pp 223–258

    Google Scholar 

  • Foote KG, Stefánsson G (1993) Definition of the problem of estimating fish abundance over an area from acoustic line-transect measurements of density. ICES J Mar Sci 50:369–381

    Google Scholar 

  • Foote KG, Knudsen HP, Vestnes G, MacLennan DN, Simmonds EJ (1987) Calibration of acoustic instruments for fish density estimation: a practical guide. ICES Coop Res Rep 144:1–69

    Google Scholar 

  • Foote KG, Knudsen HP, Korneliussen JR, Nordbø PE, Røang K (1991) Postprocessing system for echo sounder data. J Acoust Soc Am 90:38–47

    Google Scholar 

  • Foote KG, Atkins PR, Bongiovanni C, Francis DTI, Eriksen PK, Larsen M, Mortensen T (1999) Measuring the frequency response function of a seven-octave-bandwidth echo sounder. Proc Inst Acoust 21(1):88–95

    Google Scholar 

  • Foote KG, Atkins PR, Francis DTI, Knutsen T (2005a) Measuring echo spectra of marine organisms over a wide bandwidth. In: Papadakis JS, Bjørnø L (eds) Proceedings of International Conference on Underwater Acoustic Measurements: Technologies and Results, Heraklion, Crete, Greece, 28 June–1 July 2005, pp 501–508

    Google Scholar 

  • Foote KG, Chu D, Hammar TR, Baldwin KC, Mayer LA, Hufnagle LC, Jr, Jech JM (2005b) Protocols for calibrating multibeam sonar. J Acoust Soc Am 117:2013–2027

    Google Scholar 

  • Foote KG, Hanlon RT, Iampietro PJ, Kvitek RG (2006) Acoustic detection and quantification of benthic egg beds of the squid Loligo opalescens in Monterey Bay, California. J Acoust Soc Am 119:844–856

    PubMed  Google Scholar 

  • Foote KG, Francis DTI, Atkins PR (2007) Calibration sphere for low-frequency parametric sonars. J Acoust Soc Am 121:1482–1490

    PubMed  Google Scholar 

  • Forbes ST, Nakken O (1972) Manual of methods for fisheries resource survey and appraisal. Part 2. The use of acoustical instruments of fish detection and abundance estimation. FAO Man Fish Sci (5):1–138

    Google Scholar 

  • Furusawa M (1991) Designing quantitative echo sounders. J Acoust Soc Am 90:26–36

    Google Scholar 

  • Gerlotto F, Soria M, Frèon P (1999) From 2D to 3D: the use of multi-beam sonar for a new approach in fisheries acoustics. Can J Fish Aquat Sci 56:6–12

    Google Scholar 

  • Goodman L (1990) Acoustic scattering from ocean microstructure. J Geophys Res 95:11557–11573

    Google Scholar 

  • Gordon J, Tyack P (2002) Sound and cetaceans. In: Evans PGH, Raga JA (eds) Marine mammals: biology and conservation. Kluwer/Plenum, London, pp 139–196

    Google Scholar 

  • Gough PT, Hayes MP (1989) Test results using a prototype synthetic aperture sonar. J Acoust Soc Am 86:2328–2333

    Google Scholar 

  • Greene CH, Wiebe PH, Burczynski J, Youngbluth MJ (1988) Acoustical detection of high-density krill demersal layers in the submarine canyons off Georges Bank. Science 241:359–361

    PubMed  Google Scholar 

  • Hampton I, Armstrong MJ, Jolly GM, Shelton PA (1990) Assessment of anchovy spawner bio-mass off South Africa through combined acoustic and egg-production surveys. Rapp P-v Rèun Cons Int Explor Mer 189:18–32

    Google Scholar 

  • Haug A, Nakken O (1977) Echo abundance indices of 0-group fish in the Barents Sea, 1965–1972. Rapp P-v Rèun Cons Int Explor Mer 170:259–264

    Google Scholar 

  • Hayes SA, Mellinger DK, Croll DA, Costa DP, Borsani JF (2000) An inexpensive passive acoustic system for recording and localizing wild animal sounds. J Acoust Soc Am 107:3552–3555

    PubMed  CAS  Google Scholar 

  • Hewitt RP, Demer DA (2000) The use of acoustic sampling to estimate the dispersion and abundance of euphausiids, with an emphasis on Antarctic krill, Euphausia superba. Fish Res 47:215–229

    Google Scholar 

  • Holliday DV (1977) Extracting bio-physical information from acoustic signatures of marine organisms. In: Anderson NR, Zahuranec BJ (eds) Oceanic sound scattering prediction. Plenum, New York, pp 619–624

    Google Scholar 

  • Holliday DV (1980) Use of acoustic frequency diversity for marine biological measurements. In: Diemer FP, Vernberg FJ, Mirkes DZ (eds) Advanced concepts in ocean measurements for marine biology. University of South Carolina, Columbia, SC, pp 423–460

    Google Scholar 

  • Holliday DV, Pieper RE (1980) Volume scattering strengths and zooplankton disributions at acoustic frequencies between 0.5 and 3 MHz. J Acoust Soc Am 67:135–146

    Google Scholar 

  • Holliday DV, Pieper RE, Kleppel GS (1989) Determination of zooplankton size and distribution with multi-frequency acoustic technology. J Cons Int Explor Mer 46:52–61

    Google Scholar 

  • Holmes JA, Cronkite GMW, Enzenhofer HJ, Mulligan TJ (2006a) Accuracy and precision of fish-count data from a “dual-frequency identification sonar” (DIDSON) imaging system. ICES J Mar Soc 63:543–555

    Google Scholar 

  • Holmes JD, Carey WM, Lynch JF (2006b) Results from an autonomous underwater vehicle towed hydrophone array experiment in Nantucket Sound. J Acoust Soc Am 120:EL15–EL21

    Google Scholar 

  • Jakobsson J (1983) Echo surveying of the Icelandic summer spawning herring 1973–1982. FAO Fish Rep 300:240–248

    Google Scholar 

  • Jech JM, Michaels WL (2006) A multifrequency method to classify and evaluate fisheries acoustics data. Can J Fish Aquat Sci 63:2225–2235

    Google Scholar 

  • Johannesson KA, Robles AN (1977) Echo surveys of Peruvian anchoveta. Rapp P-v Rèun Cons Int Explor Mer 170:237–244

    Google Scholar 

  • Kaatz IM (2002) Multiple sound-producing mechanisms in teleost fishes and hypotheses regarding their behavioural significance. Bioacoustics 12:230–233

    Google Scholar 

  • Kleckner RC, Gibbs RH, Jr (1972) Swimbladder structure of Mediterranean midwater fishes and a method of comparing swimbladder data with acoustic profiles. Mediterranean Biological Studies Final Report. Smithsonian Institution, Washington, DC. Vol 1, Pt 4, pp 230–281

    Google Scholar 

  • Korneliussen RJ (2000) Measurment and removal of echo integration noise. ICES J Mar Sci 57:1204–1217

    Google Scholar 

  • Korneliussen RJ, Ona E (2002) An operational system for processing and visualizing multi-frequency acoustic data. ICES J Mar Sci 59:293–313

    Google Scholar 

  • Korneliussen RJ, Ona E (2003) Synthetic echograms generated from the relative frequency response. ICES J Mar Sci 60:636–640

    Google Scholar 

  • Lavery AC, Ross T (2007) Acoustic scattering from double-diffusive microstructure. J Acoust Soc Am 122:1449–1462

    PubMed  Google Scholar 

  • Lavery AC, Schmitt RW, Stanton TK (2003) High frequency acoustic scattering from turbulent microstructure: the importance of density fluctuations. J Acoust Soc Am 114:2685–2697

    PubMed  Google Scholar 

  • Lawson GL, Wiebe PH, Ashjian CJ, Gallager SM, Davis CS, Warren JD (2004) Acoustically-inferred zooplankton distribution in relation to hydrography west of the Antarctic Peninsula. Deep-Sea Res II 51:2041–2072

    Google Scholar 

  • Leaper R, Gillespie D, Papastavrou (2000) Results of passive acoustic surveys for odontocetes in the Southern Ocean. J Cetacean Res Manage 2:187–196

    Google Scholar 

  • Leighton TG (1994) The acoustic bubble. Academic, San Diego, CA

    Google Scholar 

  • Levenson C (1974) Source level and bistatic target strength of the sperm whale (Physeter catodon) measured from an oceanographic aircraft. J Acoust Soc Am 55:1100–1103

    Google Scholar 

  • Levenson C, Leapley WT (1978) Distribution of humpback whales (Megaptera novaeangliae) in the Caribbean determined by a rapid acoustic method. J Fish Res Board Can 35:1150–1152

    Google Scholar 

  • Ljungblad DK, Thompson PO, Moore SE (1982) Underwater sounds recorded from migrating bowhead whales, Balaena mysticetus, in 1979. J Acoust Soc Am 71:477–482

    Google Scholar 

  • Lobel PS (2001) Acoustic behavior of cichlid fishes. J Aquaricult Aquat Sci 9:167–186

    Google Scholar 

  • Love RH (1973) Target strengths of humpback whales Megaptera novaeangliae. J Acoust Soc Am 54:1312–1315

    Google Scholar 

  • Løvik A, Hovem JM (1979) An experimental investigation of swimbladder resonance in fishes. J Acoust Soc Am 66:850–854

    Google Scholar 

  • Lucifredi I, Stein PJ (2007) Gray whale target strength measurements and the analysis of the backscattered response. J Acoust Soc Am 121:1383–1391

    PubMed  Google Scholar 

  • Luczkovich JJ, Sprague MW (2002) Using passive acoustics to monitor estuarine fish populations. Bioacoustics 12:289–291

    Google Scholar 

  • Lynch JF, Chu D, Austin T, Carey W, Pierce A, Holmes J (2006) Detection and classification of buried targets and sub-bottom geoacoustic inversion with an AUV carried low frequency acoustic source and a towed array. In: Proceedings of the MTS/IEEE Oceans 2006 Conference, Boston, MA, 5 pp

    Google Scholar 

  • MacLennan DN (1990) Acoustical measurement of fish abundance. J Acoust Soc Am 87:1–15

    Google Scholar 

  • Madureira LSP, Everson I, Murphy EJ (1993) Interpretation of acoustic data at two frequencies to discriminate between Antarctic krill (Euphausia superba Dana) and other scatterers. J Plankton Res 15:787–802

    Google Scholar 

  • Mais KF (1977) Acoustic surveys of northern anchovies in the California Current system, 1966–1972. Rapp P-v Rèun Cons Int Explor Mer 170:287–295

    Google Scholar 

  • Makris NC, Ratilal P, Symonds DT, Jagannathan S, Lee S, Nero RW (2006) Fish population and behavior revealed by instantaneous continental shelf-scale imaging. Science 311:660–663

    PubMed  CAS  Google Scholar 

  • Mann DA, Higgs DM, Tavolga WN, Souza MJ, Popper AN (2001) Ultrasound detection by clupeiform fishes. J Acoust Soc Am 109:3048–3054

    PubMed  CAS  Google Scholar 

  • Mathisen OA, Croker TR, Nunnallee EP (1977) Acoustic estimation of juvenile sockeye salmon. Rapp P-v Rèun Cons Int Explor Mer 170:279–286

    Google Scholar 

  • Mayer L, Li Y, Melvin G (2002) 3D visualization for pelagic fisheries research and assessment. ICES J Mar Sci 59:216–225

    Google Scholar 

  • McClatchie S, Ye Z (2000) Target strength of an oily deep-water fish, orange roughy (Hoplostethus atlanticus) II. Modeling. J Acoust Soc Am 107:1280–1285

    CAS  Google Scholar 

  • Medwin H, Clay CS (1998) Fundamentals of acoustical oceanography. Academic, Boston, MA

    Google Scholar 

  • Mellinger DK, Clark CW (2000) Recognizing transient low-frequency whale sounds by spectrogram correlation. J Acoust Soc Am 107:3518–3529

    PubMed  CAS  Google Scholar 

  • Midling K, Soldal AV, Fosseidengen JE, Øvredal JT (2002) Calls of the Atlantic cod: does captivity restrict their vocal repertoire? Bioacoustics 12:233–235

    Google Scholar 

  • Midttun L, Nakken O (1977) Some results of abundance estimation studies with echo integrators. Rapp P-v Rèun Cons Int Explor Mer 170:253–258

    Google Scholar 

  • Minnaert M (1933) On musical air bubbles and the sound of running water. Phil Mag 16:235–248

    Google Scholar 

  • Misund OA (1993) Abundance estimation of fish schools based on a relationship between school area and school biomass. Aquat Living Resour 6:235–241

    Google Scholar 

  • Misund OA, Aglen A (1992) Swimming behaviour of fish schools in the North Sea during acoustic surveying and pelagic trawl sampling. ICES J Mar Sci 49:325–334

    Google Scholar 

  • Misund OA, Aglen A, Beltestad AK, Dalen J (1992) Relationships between the geometric dimensions and biomass of schools. ICES J Mar Sci 49:305–315

    Google Scholar 

  • Mitson RB (1983) Fisheries sonar (incorporating Underwater observation using sonar by DG Tucker). Fishing News Books, Farnham, Surray, England

    Google Scholar 

  • Mitson RB, Wood RJ (1961) An automatic method of counting fish echoes. J Cons int Explor Mer 26:281–291

    Google Scholar 

  • Mitson RB, Simard Y, Goss C (1996) Use of a two-frequency algorithm to determine size and abundance of plankton in three widely spaced locations. ICES J Mar Sci 53:209–215

    Google Scholar 

  • Moffett MB, Konrad WL (1997) Nonlinear sources and receivers. In: Crocker MJ (ed) Encyclopedia of acoustics. Vol. 1. Wiley, New York, 607–617

    Google Scholar 

  • Møhl B, Terhune JM, Ronald K (1975) Underwater calls of the harp seal, Pagophilus groenlandi-cus. Rapp P-v Rèun Cons Int Explor Mer 169:533–543

    Google Scholar 

  • Moursund RA, Carlson TJ, Peters RD (2003) A fisheries application of a dual-frequency indenti-fication sonar acoustic camera. ICES J Mar Sci 60:678–683

    Google Scholar 

  • Murray SO, Mercado E, Roitblat HL (1998) The neural network classification of false killer whale (Pseudorca crassidens) vocalizations. J Acoust Soc Am 104:3626–3633

    PubMed  CAS  Google Scholar 

  • NDRC National Defense Research Committee (1946) Physics of sound in the sea. Reprinted 1969 by Department of the Navy Headquarters Naval Material Command, Washington, DC

    Google Scholar 

  • Nestler JM, Ploskey GR, Pickens J, Menezes J, Schilt C (1992) Responses of blueback herring to high-frequency sound and implications for reducing entrainment at hydropower dams. N Am J Fish Manage 12:667––683

    Google Scholar 

  • Nøttestad L, Axelsen BE (1999) Herring schooling manoeuvres in response to killer whale attacks. Can J Zool 77:1540–1546

    Google Scholar 

  • Novarini JC, Bruno DR (1982) Effects of the sub-surface bubble layer on sound propagation. J Acoust Soc Am 72:510–514

    Google Scholar 

  • Ona E, Korneliussen R, Knudsen HP, Røang K, Eliassen I, Heggelund Y, Patel D (2004) The Bergen multifrequency analyzer (BMA): a new toolbox for acoustic categorization and species identification. J Acoust Soc Am 115:2584

    Google Scholar 

  • Ona E, Dalen J, Knudsen HP, Patel R, Andersen LN, Berg S (2006) First data from sea trials with the new MS70 multibeam sonar. J Acoust Soc Am 120:3017

    Google Scholar 

  • Orlowski A (1984) Application of multiple echoes energy measurements for evaluation of sea bottom type. Oceanologia 19:61–78

    Google Scholar 

  • Orlowski A (1989) Application of acoustic methods to correlation of fish density distribution and the type of sea bottom. Proc Inst Acoust 11:179–185

    Google Scholar 

  • Overholtz WJ, Jech JM, Michaels WL, Jacobson LD (2006) Empirical comparisons of survey designs in acoustic surveys of Gulf of Maine-Georges Bank Atlantic herring. J Northw Atl Fish Sci 36:127–144

    Google Scholar 

  • Pavan G, Hayward TJ, Borsani JF, Priano M, Manghi M, Fossati C, Gordon J (2000) Time patterns of sperm whale codas recorded in the Mediterranean Sea 1985–1996. J Acoust Soc Am 107:3487–3495

    PubMed  CAS  Google Scholar 

  • Plachta DTT, Popper AN (2002) Neuronal and behavioural responses of American shad Alosa sapidissima to ultrasound stimuli. Bioacoustics 12:191–193

    Google Scholar 

  • Popper AN, Edds-Walton PL (1997) Bioacoustics of marine vertebrates. In: Crocker MJ (ed) Encyclopedia of acoustics. Wiley, New York, pp 1831–1836

    Google Scholar 

  • Ray C, Watkins WA, Burns JJ (1969) The underwater song of Erignathus (bearded seal). Zoologica 54:79–83

    Google Scholar 

  • Rayleigh JWS (1896) The theory of sound. 2nd edn. Revised and enlarged. Reprinted 1945, Dover, New York

    Google Scholar 

  • Reynolds JR, Highsmith RC, Konar B, Wheat CG, Doudna D (2001) Fisheries and fisheries habitat investigations using undersea technology. In: Proceedings of the MTS/IEEE Oceans 2001 Conference, Honolulu, HI, pp 812–820

    Google Scholar 

  • Robinson SP, Harris PM, Ablitt J, Hayman G, Thompson A, van Buren AL, Zalesak JF, Enyakov AM, Purcell C, Houqing Z, Yuebing W, Yue Z, Botha P, Kröger D (2006) An international key comparison of free-field hydrophone calibrations in the frequency range 1 to 500 kHz. J Acoust Soc Am 120:1366–1373

    Google Scholar 

  • Rolt KD, Schmidt H (1994) Effects of refraction on synthetic aperture sonar imaging. J Acoust Soc Am 95:3424–3429

    Google Scholar 

  • Rountree RA, Gilmore RG, Goudey CA, Hawkins AD, Luczkovich JJ, Mann DA (2006) Listening to fish: applications of passive acoustics to fisheries science. Fisheries 31:433–446

    Google Scholar 

  • Rusby JSM, Somers ML, Revie J, McCartney BS, Stubbs AR (1973) An experimental survey of a herring fishery by long-range sonar. Mar Biol 22:271–292

    Google Scholar 

  • Schaafsma AS (1992) In situ acoustic attenuation spectroscopy of sediment suspension. In: Weydert M (ed) European Conference on Underwater Acoustics, pp 177–180

    Google Scholar 

  • Schiagintweit GEO (1993) Real-time acoustic bottom classification for hydrography: A field evaluation of RoxAnn. In: Proceedings of the MTS/IEEE Oceans 1993 Conference 3:214–219

    Google Scholar 

  • Schmitz B (2002) Sound production in crustacea with special reference to the Alpheidae. In: Wiese K (ed) The crustacean nervous system. Springer, Berlin, pp 536–547

    Google Scholar 

  • Seim HE, Gregg MC, Miyamoto RT (1995) Acoustic backscatter from turbulent microstructure. J Atmos Ocean Tech 12:367–380

    Google Scholar 

  • Soria M, Frèon P, Gerlotto F (1996) Analysis of vessel influence on spatial behaviour of fish schools using a multi-beam sonar and consequences for biomass estimates by echo sounder. ICES J Mar Sci 53:453–458

    Google Scholar 

  • Stachiw JD, Peters D (2005) Alumina ceramic 10 in flotation spheres for deep submergence ROV/AUV systems. In: Proceedings of the MTS/IEEE Oceans 2005 Conference, Washington, DC, 8 pp

    Google Scholar 

  • Stanton TK (1985) Density estimates of biological sound scatterers using sonar echo peak PDFs. J Acoust Soc Am 78:1868–1873

    Google Scholar 

  • Stanton TK, Clay CS (1986) Sonar echo statistics as a remote-sensing tool: volume and seafloor. IEEE J Oceanic Eng 11:79–96

    Google Scholar 

  • Stanton TK, Chu D, Wiebe PH (1998) Sound scattering by several zooplankton groups. II. Scattering models. J Acoust Soc Am 103:236–253

    CAS  Google Scholar 

  • Stanton TK, Chu D, Jech JM, Irish JD (2006) Statistical behavior of echoes from swim bladder-bearing fish at 2–4 kHz. In: Proceedings of the MTS/IEEE Oceans 2006 Conference, Boston, MA, 3 pp

    Google Scholar 

  • Stanton TK, Chu D, Jech JM, Irish JD (2007) A broadband echosounder for resonance classification of swimbladder-bearing fish. In: Proceedings of the IEEE Oceans 2007 Conference, Aberdeen, UK, 3 pp

    Google Scholar 

  • Sullivan EJ, Holmes JD, Carey WM, Lynch JF (2006) Broadband passive synthetic aperture: experimental results. J Acoust Soc Am 120:EL49–EL54

    Google Scholar 

  • Tarifeño E, Andrade Y, Montesinos J (1990) An echo-acoustic method for assessing clam populations on a sandy bottom. Rapp P-v Rèun Cons Int Explor Mer 189:95–100

    Google Scholar 

  • Terhune JM, Ronald K (1986) Distant and near-range functions of harp seal underwater calls. Can J Zool 64:1065–1070

    Google Scholar 

  • Thode A, Norris T, Barlow J (2000) Frequency beamforming of dolphin whistles using a sparse three-element towed array. J Acoust Soc Am 107:3581–3584

    PubMed  CAS  Google Scholar 

  • Thomas JA, Fisher SR, Ferm LM, Holt RS (1986) Acoustic detection of cetaceans using a towed array of hydrophones. Rep Int Whal Commn, Special Issue 8:139–148

    Google Scholar 

  • Thompson PO, Cummings WC, Ha SJ (1986) Sounds, source levels, and associated behavior of humpback whales, Southeast Alaska. J Acoust Soc Am 80:735–740

    PubMed  CAS  Google Scholar 

  • Thorne RE (1977) Acoustic assessment of Pacific hake and herring stocks in Puget Sound, Washington and southeastern Alaska. Rapp P-v Rèun Cons Int Explor Mer 170:265–278

    Google Scholar 

  • Thorne PD, Hardcastle PJ, Soulsby RL (1993) Analysis of acoustic measurements of suspended sediments. J Geophys Res 98:899–910

    Google Scholar 

  • Tiffan KF, Rondorf DW, Skalicky JJ (2004) Imaging fall Chinook salmon redds in the Columbia River with a dual-frequency identification sonar. N Am J Fish Manage 24:1421–1426

    Google Scholar 

  • Traynor JJ, Nelson MO (1985) Methods of the U.S. hydroacoustic (echo integrator-midwater trawl) survey. Int North Pac Fish Comm Bull 44:30–38

    Google Scholar 

  • Trenkel V, Mazauric V, Berger L (2006) First results with the new scientific multibeam echo-sounder ME70. J Acoust Soc Am 120:3017

    Google Scholar 

  • Trevorrow MV (1998) Salmon and herring school detection in shallow waters using sidescan sonars. Fish Res 35:5–14

    Google Scholar 

  • Trevorrow MV (2001) An evaluation of a steerable sidescan sonar for surveys of near-surface fish. Fish Res 50:221–234

    Google Scholar 

  • Tyack PL (2000) Functional aspects of cetacean communication. In: Mann J, Connor RC, Tyack PL, Whitehead H (eds) Cetacean societies: field studies of dolphins and whales. University of Chicago Press, Chicago, IL, pp 270–307

    Google Scholar 

  • Tyack PL (2001) Marine mammal overview. In: Steele JH, Turekian KK, Thorpe SA (eds) Encyclopedia of ocean sciences. Academic, San Diego, CA, pp 1611–1621

    Google Scholar 

  • Tyack PL, Clark CW (2000) Communication and acoustic behavior of dolphins and whales. In: Au W, Popper AS, Fay R (eds) Hearing by whales and dolphins. Springer, New York, pp 156–224

    Google Scholar 

  • Urick RJ (1983) Principles of underwater sound. 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Versluis M, Schmitz B, von der Heydt A, Lohse D (2000) How snapping shrimp snap: through cavitating bubbles. Science 289:2114–2117

    PubMed  CAS  Google Scholar 

  • Wade G, Coelle-Vera A, Schlussler L, Pei SC (1975) Acoustic lenses and low-velocity fluids for improving Bragg-diffraction images. Acoust Hologr 6:345–362

    Google Scholar 

  • Watkins WA, Moore KE (1982) An underwater acoustic survey for sperm whales (Physeter catodon) and other cetaceans in the southeast Caribbean. Cetology 46:1–7

    Google Scholar 

  • Watkins WA, Schevill WE (1972) Sound source location by arrival-times on a non-rigid three-dimensional hydrophone array. Deep-Sea Res 19:691–706

    Google Scholar 

  • Watkins WA, Schevill WE (1979) Distinctive characteristics of underwater calls of the harp seal, Phoca groenlandica, during the breeding season. J Acoust Soc Am 66:983–988

    Google Scholar 

  • Watkins WA, Tyack P, Moore KE, Bird JE (1987) The 20-Hz signals of finback whales (Balaenoptera physalus). J Acoust Soc Am 82:1901–1912

    PubMed  CAS  Google Scholar 

  • Webb DC, Simonetti PJ, Jones CP (2001) SLOCUM: an underwater glider propelled by environmental energy. IEEE J Oceanic Eng 26:447–452

    Google Scholar 

  • Weilgart L, Whitehead H (1993) Coda communication by sperm whales (Physeter macrocephalus) off the Galápagos Islands. Can J Zool 71:744–752

    Google Scholar 

  • Weilgart L, Whitehead H (1997) Group-specific dialects and geographical variation in coda repertoire in South Pacific sperm whales. Behav Ecol Sociobiol 40:277–285

    Google Scholar 

  • Wespestad VG, Megrey BA (1990) Assessment of walleye pollock stocks in the eastern North Pacific Ocean: an integrated analysis using research survey and commercial fisheries data. Rapp P-v Rèun Cons Int Explor Mer 189:33–49

    Google Scholar 

  • Westervelt PJ (1963) Parametric acoustic array. J Acoust Soc Am 35:535–537

    Google Scholar 

  • Weston DE (1967) Sound propagation in the presence of bladder fish. In: Albers VM (ed) Underwater acoustics. Plenum, New York, pp 55–88

    Google Scholar 

  • Weston DE (1972) Fisheries significance of the attenuation due to fish. J Cons int Explor Mer 34:306–308

    Google Scholar 

  • Weston DE, Revie J (1971) Fish echoes on a long range sonar display. J Sound Vib 17:105–112

    Google Scholar 

  • Weston DE, Horrigan AA, Thomas SJL, Revie J (1969) Studies of sound transmission fluctuations in shallow coastal waters. Phil Trans Roy Soc Lond 265:567–607

    Google Scholar 

  • Weston DE, Somers ML, Revie J (1991) GLORIA interference patterns with modes akin to surface-duct modes. J Acoust Soc Am 89:2180–2184

    Google Scholar 

  • Weston S, Stachiw J, Merewether R, Olsson M, Jemmott G (2005) Alumina ceramic 3.6 in flotation spheres for 11 km ROV/AUV systems. In: Proceedings of the MTS/IEEE Oceans 2005 Conference, Washington, DC, 6 pp

    Google Scholar 

  • Winn HE, Edel RK, Taruski AG (1975) Population estimate of the humpback whale (Megaptera novae-angliae) in the West Indies by visual and acoustic techniques. J Fish Res Board Can 32:499–506

    Google Scholar 

  • Wysocki LE, Ladich F (2002) Ontogeny of hearing and sound production in fishes. Bioacoustics 12:183–189

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Foote, K.G. (2009). Acoustic Methods: Brief Review and Prospects for Advancing Fisheries Research. In: Beamish, R.J., Rothschild, B.J. (eds) The Future of Fisheries Science in North America. Fish & Fisheries Series, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9210-7_18

Download citation

Publish with us

Policies and ethics