Skip to main content

Modelling Climate Variability of Selected Shelf Seas

  • Chapter
  • 1000 Accesses

Abstract

In this chapter we shall focus our attention to several shelf seas, the characteristics and variability of each of them are very different from others: the North Sea and the White Sea, the Caspian Sea and the Black Sea. Each of these four seas has its own peculiarities.

For the North Sea the validity of simple oceanic balances are tested against high resolving numerical modelling. The decisive factors of the White Sea dynamics are strong tidal processes. A large section of this chapter is devoted to modelling seasonal variability of the Caspian Sea, the largest enclosed water body on the Earth. The sea surface heat flux components undergo very strong seasonal variations following the surrounding continental climate. Seasonal variations of the Black Sea thermo-hydrodynamical characteristics are described in the last and the largest section. Models and numerical methods describe the seasonal variability of the Black Sea internal physical characteristics as Cold Intermediate Layer, transformation of the effect of river fresh water discharge, as well as water exchange with theMediterranean Sea. A new four-dimensional analysis-double-correction method of data assimilation is presented. We consider this type of model-data synthesis to be one of the most perspective ways for understanding the ocean/sea long-term variability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhverdiev I. O. and Y. L. Demin, 1989. On of the Caspian sea currents in the summer season as result of diagnostic calculation. In book of A.N. Kosarev, The Caspian sea: The Water Structure and Dynamics, Nauka, Moscow, 5–15 (in Russian)

    Google Scholar 

  • Altman E. N., 1991. Water balance. In: A.I. Simonov and E.N Altman (eds.), Hydrometeorology and Hydrochemistry of the USSR Seas. Vol.4: The Black Sea, Hydrometioizdat, St.-Petersburg, 103–124 (in Russian).

    Google Scholar 

  • Altman E. N., I. F. Gertman, and Z. A. Golubeva, 1987. Climatological fields of salinity and temperature in the Black Sea, Report, State Oceanogr. Inst., Sevastopol Branch, Sevastopol, Ukraine, 109 pp.

    Google Scholar 

  • Arpe K. and E. Roeckner, 1999. Simulation of the hydrological cycle over Europe: Model validation and impacts of increasing greenhouse gases. Adv. Water Resour. 23: 105–119.

    Article  Google Scholar 

  • Aubrey D. G., Z. Belberov, A. Bologa, V. Eremeev, and U. Unluata, 1992. A coalition to diagnose the patient: CoMSBlack and the Black Sea. Mar. Technol. 2: 5–8.

    Google Scholar 

  • Backhaus J., 1985. A three-dimensional model for the simulation of shelf sea dynamics. Dt. Hydrogr. Z. 38: 165–187.

    Article  Google Scholar 

  • Backhaus J. and D. Hainbucher, 1987. A finite difference general circulation model for shelf seas and its application to low frequency variability on the North European shelf. In: Nihoul J. and B. Jamart (eds.), Three-Dimensional Models of Marine and Estuarine Dynamics. Elsevier Oceanogr. Ser. 45, 221–244.

    Google Scholar 

  • Badalov A. B. and D. G. Rzheplinski, 1989. Modelling of the Caspian sea active layer dynamics generated by synoptic-scale atmospheric processes. In collected articles of A. S. Sarkisyan (Ed.) Modelling of Hydrophysical Fields and Processes in Closed Basins and Seas. Nauka, Moscow, 31–51 (in Russian).

    Google Scholar 

  • Becker G. and M. Pauly, 1996. Sea surface temperature changes in the North Sea and their causes. ICES J. Mar. Sc. 53: 887–898.

    Article  Google Scholar 

  • Beron-Vera F. J., J. Ochao, and P. Ripa, 1999. A note on boundary conditions for salt and freshwater balances. Ocean Modelling 1: 111–118.

    Article  Google Scholar 

  • Besiktepe S., H. I. Sur, E. Ozsoy, M. A. Latif, T. Oguz, and U. Unluata, 1994. The circulation and hydrography of the Marmara sea. Prog. Oceanogr. 34: 285–334.

    Article  Google Scholar 

  • Betts A. K., J. H. Ball, and P. Viterbo, 1999. Basin-scale surface water and energy budgets for the Mississippi from the ECMWF reanalysis. J. Geophys. Res. 104, D16: 19293–19306.

    Article  Google Scholar 

  • Blatov A. S., N. P. Bulgakov, V. A. Ivanov, A. N. Kosarev, and V. S. Tuzhilkin, 1984. Variability of Hydrophysical Fields of the Black Sea, Hydrometizdat, Leningrad, 240 pp. (in Russian).

    Google Scholar 

  • Bogdanova A. K., 1961. The distribution of Mediterranean waters in the Black Sea. Okeanologia 1: 983–992. [English Translation (1963): Deep-Sea Res. 10: 665–672].

    Google Scholar 

  • Boguslavskiy S. G., A. S. Sarkisyan, T. Z. Dzhioyev, and L. A. Koveshnikov, 1976. Analysis of Black Sea current calculations. Izv. Atmos. Oceanic Phys. 12: 205–207 (Engl. translation).

    Google Scholar 

  • Boguslavskiy S.G., Y. A. Agafonov, and L. S. Isayeva, 1982. Exploration of the Black Sea during the 23rd Cruise of the R/V Akudemik Vernadskiy. Oceanology 22: 385–386.

    Google Scholar 

  • Bologa A. S., 1986. Planktonic primary productivity of the Black Sea: A review. Thalassia Jugosl. 22: 1–22.

    Google Scholar 

  • Bondarenko A. L., 1993. The Caspian Sea Currents and the North Caspian Waters Salinity Formation, Nauka, Moscow, 122 pp. (in Russian).

    Google Scholar 

  • Bortnik V. N. and R. E. Nikonova, 1992. Water balance. In: F. S. Terziev, A. N. Kosarev, and A. A. Kerimov, Hydrometeorology and Hydrochemistry of Seas. Vol.6: The.Caspian Sea. Iss.1: Hydrometeorological Conditions, Hydrometeoizdat, St. Petersburg, 211–221.

    Google Scholar 

  • Bryan K. A., 1969. Numerical method for the study of the circulation of the world ocean. J. Comput. Phys. 4: 347–376.

    Article  Google Scholar 

  • Cane M., V. Kamenkovich, and A. Krupitsky (1998). On the utility and disutility of JBAR. J. Phys. Oc. 28: 519–526.

    Article  Google Scholar 

  • Charnock H., K. Dyer, J. Huthnance, P. Liss, J. Simpson and P. Tett, eds., 1994. Understanding the North Sea System, Chapman & Hall, London, 222 pp.

    Google Scholar 

  • Chirea R. and T. Gomoiu, 1986. Some preliminary data on the nutrient influx into western Black Sea. Cercet. Mar., IRCM Constanta 19: 171–189.

    Google Scholar 

  • Demidov A. N., 1991, Water temperature and salinity. In: A. I. Simonov and E. N. Altman (eds.), Hydrometeorology and Hydrochemistry of the USSR Seas. VoL 4: The Black Sea, Hydrometeoizdat, St.-Petersburg, 373–397 (in Russian).

    Google Scholar 

  • Demin Y. L. and R. A. Ibrayev, 1986. A numerical method of calculation of currents and sea surface topography in multiply-connected domains of the oceans. Sov. J. Numer. Anal. Math. Modelling 4; 211–225.

    Article  Google Scholar 

  • Demyshev S. G. and G. K. Korotayev, 1992. C-grid numerical energy-balanced model of baroclinic currents in the ocean with a rough bottom. In: Numerical Models and Results of Calibration Calculations of Currents in the Atlantic Ocean (IVM RAN, Moscow, 1992), 163–231 (in Russian).

    Google Scholar 

  • Demyshev S. G., G. K. Korotaev, and V. V. Knysh, 2004a. Modelling the seasonal variability of the temperature regime of the Black Sea active layer. Izv. Akad. Nauk, Fiz. Atmos. Okeana 40: 259–270 [Izv., Atmos. Ocean. Phys. 40: 227–237 (2004)].

    Google Scholar 

  • Demyshev S. G. and V. V. Knysh, 2004. Reconstruction of an adapted vertical velocity of the Black Sea on the basis of the synthesis of a circulation model and climatic data on temperature and salinity. In: Ecological Safety of Coastal and Shelf Areas and a Complex Use of Shelf Resources (EKOSI-Gidrofizika, Sevastopol, 2004), No. 11, 93–104 (in Russian).

    Google Scholar 

  • Demyshev S. G., V. V. Knysh, and A. S. Sarkisyan, 2004b. Some characteristic features of the climatic waters circulation and the formation of the cold intermediate layer of the Black Sea. Izv. Atmosph. and Oceanic Phys. 40(5): 569-582 (English trans).

    Google Scholar 

  • Demyshev S. G., V. V. Knysh, and G. K. Korotaev, 2006. Calculation of adapted Black Sea fields on the basis of assimilation of climatic temperature and salinity data into the model. Izv. Akad. Nauk, Fiz. Atmos. Okeana 42: 604–617 [Izv. Atmos. Ocean. Phys. 42: 555–567 (2006)].

    Google Scholar 

  • Demyshev S. G., V. V. Knysh, and N. V. Inyushina, 2005. Seasonal variability and depth transformation of climatic horizontal currents of the Black Sea from results of assimilating new climatic data on temperature and salinity into models. Marine Hydrophys. Jour. 6: 28–45.

    Google Scholar 

  • Dorofeev V. L. and G. K. Korotaev, 2004. Assimilation of the data of satellite altimetry in an eddy-resolving model of the Black Sea circulation. Marine Hydrophys. Jour. 1: 52–68.

    Google Scholar 

  • Dorofeev V. L., G. K. Korotaev, M. V. Martynov, and Y. B. Ratner, 2004. System of monitoring hydrophysical fields of the Black Sea in a quasi-operative mode. In: Ecological Safety of Coastal and Shelf Areas and a Complex Use of Shelf Resources (EKOSI-Gidrofizika, Sevastopol, 2004), N 11, 9–23 (in Russian).

    Google Scholar 

  • Dorofeev V. L., V. V. Knysh, and G. K. Korotaev, 2006. Estimation of the long-term variability of hydrophysical characteristics of the Black Sea on the basis of assimilation of climatic hydrologic and altimetric fields. Marine Hydrophys. Jour. 4: 3–17.

    Google Scholar 

  • Dzhioev T. K. and A. S. Sarkisyan, 1976. Numerical computations of the Black Sea currents. Izv.Acad. Sci. USSR Atmos. Oceanic Phys. 6: 217–223 (Engl Transl).

    Google Scholar 

  • Edwards M. and P. Reid, 2001. Implications of wider Atlantic influences on regional seas with particular reference to phytoplankton populations and eutrophication. OSPAR Convention for the Protection of the Marine Environment of the North Atlantic, Meeting of the Eutrophication Task Group (ETG), London, 10 pp.

    Google Scholar 

  • Eremeev V. N., Ivanov, V. A., Kosarev, A. N., and Tuzhilkin, V. S., 1994. Annual and semi-annual harmonics in the climatic salinity fields of the Black sea. In: Eremeev, V. N. et al. (eds.), Diagnosis of the State of Marine Environment of the Azov-Black Sea Basin, NAS of the Ukraine, MHI, Sevastopol, 89–101.

    Google Scholar 

  • Esbensen S. K. and R. W. Reynolds, 1981. Estimating monthly averaged air-sea transfers of heat and momentum using bulk aerodynamic method. J. Phys. Ocean. 11: 457–465.

    Article  Google Scholar 

  • Filippov D. M., 1968. Circulation and Structure of the Waters in the Black Sea, Nauka, Moscow 136 pp. (in Russian).

    Google Scholar 

  • Fofonoff N. P. and R. C. Millard, 1983, Algorithms for Computation of Fundamental Properties of Seawater. UNESCO, Tech. Pap. In Mar. Sci., 44, 53 pp.

    Google Scholar 

  • Friedrich H. J. and E. V. Stanev, 1988. Parameterization of vertical diffusion in a numerical model of the Black sea. In: J. C. J. Nihoul and B. M. Jamart (eds.), Small-Scale Turbulence and Mixing in the Ocean, Proc. 19th Liege Colloquium on Ocean Hydrodynamics. Elsevier Oceanography Series 46, Elsevier, Amsterdam, 151–167.

    Chapter  Google Scholar 

  • Gamsakhurdiya G. R. and A. S. Sarkisyan, 1975. Diagnostic calculations of current velocities in the Black Sea. Oceanology 15: 164–167 (Engl. Transl.).

    Google Scholar 

  • Genin A., B. Lazar, and S. Brenner, 1995. Vertical mixing and coral death in the Red Sea following the eruption of Mount Pinatubo. Nature 377: 507–510.

    Article  Google Scholar 

  • Golubeva Z. A., 1991. Heat balance of the sea surface layer. In: A. I. Simonov and E. N.Altman (eds.), Hydrometeorology and Hydrochemistry of the USSR Seas. Vol.4: The Black Sea, Hydrometeoizdat, St.-Petersburg, 129–146 (in Russian).

    Google Scholar 

  • Haidvogel D. and A. Beckmann, 1998. Numerical models of the coastal ocean. In: Brink, K. and A. Robinson (eds.), The Sea, Wiley & Sons, New York, 457–482.

    Google Scholar 

  • Hainbucher D., J. Backhaus, and T. Pohlmann, 1987. Transport of conservative passive tracers in the North Sea: First results of a circulation and transport model. Cont. Shelf Res. 7(10); 1161–1179.

    Article  Google Scholar 

  • Hellerman S. and M. Rosenstein, 1983. Normal monthly wind stress over the World ocean with error estimates. J. Phys. Oceanogr. 13: 1093–1104.

    Article  Google Scholar 

  • Huthnance J., 1984. Slope currents and JBAR. J. Phys. Oc. 14: 795–810.

    Article  Google Scholar 

  • Hydrometeorology and Hydrochemistry of the USSR Seas, 1991. Hydrometeorology and Hydrochemistry of the USSR Seas. Vol. IV. Black Sea. Iss.l. Hydrometeorological Conditions, Hydrometeoizdat, St. Petersburg, 103–262 (in Russian).

    Google Scholar 

  • Ibrayev R. A., 1993. Reconstruction of the climatic characteristics of the gulf stream. Izv. Akad. Nauk, Fiz. Atmos. Okeana 29(6): 803–814.

    Google Scholar 

  • Ibrayev R. A., 2001. Model of enclosed and semi-enclosed sea hydrodynamics. Russ. J. Numer. Anal. Math. Modelling 16(4): 291–304.

    Google Scholar 

  • Ibrayev R. A., 2008. Mathematical modelling of thermodynamical processes of the Caspian Sea. GEOS, Moscow Publ., 127 pp. (in Russian).

    Google Scholar 

  • Ibrayev R. A. and D. I. Trukhchev, 1996 A diagnosis of the climatic seasonal circulation and variability of the cold intermediate layer in the Black Sea. Izv. Akad. Nauk, Fiz. Atmos. Okeana 32(5): 655–671.

    Google Scholar 

  • Ibrayev R. A. and D. I. Trukhchev, 1998. Model study of the seasonal variability of the Black Sea circulation. In: L. Ivanov and T. Oguz (eds.), Nato TU-Black Sea Project Ecosystem Modelling as a Management Tool for the Black Sea, Symposium on Scientific Results, Kluwer Academic Publishers, Dordrecht, V 2, 179–196.

    Google Scholar 

  • Ibrayev R. A., A. S. Sarkisyan, and D. I. Trukhchev, 2001. Seasonal variability of the circulation of the Caspian Sea reconstructed from mean multi-year hydrological data. Izv. Atmos. Oceanic Phy. 37(1): 103–111.

    Google Scholar 

  • Ibrayev R. A., E. Ozsoy, A. S. Sarkisyan, and H. I. Sur, 1998. Seasonal variability of the Caspian Sea dynamics: Barotropic motions driven by climatic wind stress and river discharge. In: Oceanic Fronts and Related Phenomena. International Oceanographic Commission. Workshop Report N 159, 212–217.

    Google Scholar 

  • Ivanov L., S. Besiktepe, and E. Ozsoy, 1997. The Black Sea cold intermediate layer. In: Ozsoy, E. and A. Mikaelyan. (eds.), Sensitivity to Change: Black Sea, Baltic Sea and North Sea, NATO AS1 Series 2, Environment 27, Kluwer, Dordrecht, 253–264.

    Google Scholar 

  • Kamenkovich V. M., 1973. Ocean Dynamics Fundamentals, Gidrometeoizdat, Leningrad, 270 pp. (in Russian).

    Google Scholar 

  • Kempe S., A. R. Diercks, G. Liebezeit, and A. Prange, 1991. Geochemical and structural aspects of the pycnocline in the Black Sea (R/V Knorr 134, 8 Leg 1, 1988). In: Izdar, E. and J. M. Murray (Eds.). The Black Sea Oceanography. NATO/ASI Series, Kluwer, Dordrecht, 89–110.

    Google Scholar 

  • Kideys A. E., 1994. Recent changes in the Black Sea ecosystem: The reason for the sharp decline in Turkish fisheries. J. Mar. Syst. 5: 171–181.

    Article  Google Scholar 

  • Knipovich N. M., 1932. The hydrological investigations in the Black Sea. Proc. of Azovo-Chernomorsk. Scientific-Industrial Expedition, 1932, 10, 274 pp. (in Russian).

    Google Scholar 

  • Knysh V. V., G. K. Korotaev, S. G. Demyshev, and V. N. Belokopytov, 2005. Long-term variations in thermohaline and dynamic characteristics of the Black Sea as inferred from climatic data on temperature and salinity and their assimilation into models. Marine Hydrophys. J., 3: 11–30.

    Google Scholar 

  • Knysh V.V., O. A. Saenko, and A. S. Sarkisyan, 1996. Method of assimilation of altimeter data and its test in the tropical north atlantic. Russ. J. Numer. Anal. Math. Model 11(5): 333–409.

    Google Scholar 

  • Knysh V. V., S. G. Demyshev, and G. K. Korotaev, 2002. Method of reconstructing the climatic seasonal circulation of the Black Sea on the basis of assimilation of hydrologic data into models. Marine Hydrophys. J. 2: 36–52.

    Google Scholar 

  • Knysh V. V., S. G. Demyshev, G. K. Korotaev and A. S. Sarkisyan, 2001. Four-dimensional climate of seasonal Black Sea circulation. Russ. J. Numerical Anal. Math. Modelling 16(5): 409–426.

    Google Scholar 

  • Knysh V. V., S. G. Demyshev, G. K. Korotaev, and A. S. Sarkisyan, 2007. Method and results of assimiliation of climatic data on temperature, salinity, and level into a numerical model of the Black Sea. Izv. Russ. Acad. Sci. Atmosp. Ocean Phys. 43(3): 398–412.

    Google Scholar 

  • Kochergin V., 1987. Three-dimensional prognostic models. In: Heaps, N. (ed.). Three-Dimensional Coastal Ocean Models, AGU, Washington, DC, Coastal and Estuarine Science 4, pp. 201–208.

    Google Scholar 

  • Konovalov S., A. Romanov, I. Salihoglu, O. Bagtiirk, S. Tugrul, and S. Gokmen, 1994. Intercalibration of CoMSBlack-93a chemical data, unification of methods for dissolved oxygen and hydrogen sulfide analyses and sampling strategies of CoMSBlack-94a Cruise. Inst. Mar. Sci., Middle East Tech. Univ., Erdemli, Icel. 26 pp.

    Google Scholar 

  • Korotaev G. K., 1997. Circulation in semi-enclosed seas induced by buoyncy flux through a strait. In: Proc. of the NATO Advanced Research Workshop on Sensitivity of North Seat Baltic Sea and Black Sea to Anthropogenic and Climatic Changes. Kluwer Academic Publisher, Dordrecht, 395–401.

    Google Scholar 

  • Korotaev G. K., O. A. Saenko, C. D. Koblinski, S. G. Demyshev, and V. V. Knysh, 1998, Accuracy estimation, methods, and some results of TOPEX/POSEIDON data assimilation in a model of the Black Sea general circulation. lssled. Zemli Kosmosa 3: 3–17.

    Google Scholar 

  • Korotaev G. K., O. A. Saenko, C. J. Koblinsky, and V. V. Knysh, 1999. Satellite altimetry observations of the Black Sea. In: S. Besik-tepe et al. (ed.), Enviromental Degradation of the Black Sea: Challenges and Remedies, Kluwer Academic Publisher, Dordrecht, 225–244.

    Google Scholar 

  • Korotaev G. K., S. G. Demyshev, and V. V. Knysh, 2000. Three-dimensional climate of the Black Sea ecosystem processes and forcasting. In: Operational Workshop Meeting METU, IMS, ERDEMLI, 1–10.

    Google Scholar 

  • Kosarev A. N. and E. A. Yablonskaya, 1994. The Caspian Sea. SPB Academic Publishing, Amsterdam, 259 pp.

    Google Scholar 

  • Kravets A. G., 1987. The tides and their modelling in the White Sea. In: Arkhangelsk: The Problems of the White Sea, Arkhangelsk, 36–38.

    Google Scholar 

  • Laane, R., W. van Leussen, J. Berlamont, J. Sündermann, W. van Raaphorst, and F. Colijn, 1996. North-west European shelf programme (NOWESP): An overview. Dt. Hydrogr. Z. 48: 217–230.

    Google Scholar 

  • Latif M. A., E. Ozsoy, I. I. Salihoglu, A. F. Gaines, O. Bagtiirk, A. Yilmaz, and S. Tugrul, 1992. Monitoring via direct measurements of the modes of mixing and transport of wastewater discharges into the Bosphorus underflow. METU – Inst. Mar. Sci., Erdemli, & el, Tech. Rep. 92–2, 98 pp.

    Google Scholar 

  • Latif M. A., E. Ozsoy, T. Oguz, and U. Unluata, 1991. Observations of the Mediterranean inflow into the Black Sea. Deep-Sea Res. 38(Suppl. 2): S711–S723.

    Google Scholar 

  • Launder B. E., D. B. Spalding, 1972. Mathematical Models of Turbulence. Academic Press, London, 162 pp.

    Google Scholar 

  • Launiainen J. and T. Vihma, 1990. Derivation of turbulent surface fluxes – an iterative flux –profile method allowing arbitrary observing heights. Environ. Softw. 5(3): 113–124.

    Article  Google Scholar 

  • Lednev V. A., 1943. The Caspian Northern and Medium Parts Flow Fields, Morskoy Transport, Moscow, 97pp. (in Russian).

    Google Scholar 

  • Marchuk G. I., 1969. Numerical solution of the poincare problem for the ocean circulation. Dokl. Akad. Nauk SSSR 165(5): 1041–1044.

    Google Scholar 

  • Martin P. J., 1985. Simulation of the mixed layer at OWS November and Papa with several models. J. Geophys. Res. 90(C0): 903–916.

    Article  Google Scholar 

  • Mee L. D., 1992. The Black Sea in crisis: the need for concerted international action. Ambio 24: 278–286.

    Google Scholar 

  • Mellor G. L. and T. Ezer, 1991. A gulf stream model and an altimetry assimilation acheme. J. Geophys. Res. 96: 8779–8795.

    Article  Google Scholar 

  • Munk W. H., E. R. Anderson, 1948. Note on the theory of the thermocline. J. Mar. Res. 7: 276–295.

    Google Scholar 

  • Murray J. W. (Ed.), 1991. Black Sea Oceanography: Results from the 1988 Black Sea Expedition. Deep-Sea Res. 38(Suppl. 21): 1266 pp.

    Google Scholar 

  • Neumann G., 1942. Die absolute Topographie des physikalischen Meeresniveaus und die Oberflächen-Strömungen des Schwarzen Meeres. Ann. Hydrogr. Berlin 70: 265–282.

    Google Scholar 

  • Oguz T., D. G.Aubrey, V. S. Latun, E. Demirov, A. G. Kolesnikov, H. I. Sur, V. Diaconu, S. Besiktepe, M. Duman, R. Limeburner, and V. Eremeev, 1994. Mesoscale circulation and thermohaline structure of the Black Sea observed during HydroBlack’91, Deep Sea Res. 41: 603–628.

    Article  Google Scholar 

  • Oguz, T. E., E. Ozsoy, M. A. Latif, and U. Unluiata, 1990. Modelling of hydraulically controlled exchange flow in the Bosphorus Strait. J. Phys. Oceanogr. 20: 945–965.

    Article  Google Scholar 

  • Oguz T. and P. Malanotte-Rizzoli, P., 1996. Seasonal variability of the wind and thennohalme-driven circulation in the Black Sea: Modelling studies, J. Geophys. Res. 101(C7): 16551–16569.

    Article  Google Scholar 

  • Oguz T., P. E. LaViolette, and U. Unluata, 1992. The upper layer circulation of the Black Sea: its variability as inferred from hydrographic and satellite observations. J. Geophys. Res. 97: 12569–12584.

    Article  Google Scholar 

  • Oguz T., V. S. Latun, M. A. Latif, V. V. Vladimirov, H. I. Sur, A. A. Markov, E. Ozsoy, B. B. Kotovshchikov, V. N. Eremeev, and U. Unluata, 1993. Circulation in the surface and intermediate layers of the Black Sea. Deep Sea Res. 40: 1597–1612.

    Article  Google Scholar 

  • Orlanski I., 1976. A simple boundary conditions for unbounded hyperbolic flows. J. Comput. Phys. l2(3): 251–269.

    Article  Google Scholar 

  • Ovchinnikov I. M. and Y. I. Popov, 1984. On the problem of forming the cold intermediate layer in the Black Sea. Dokl. Akad. Nauk SSSR 29: 986–989.

    Google Scholar 

  • Ozsoy E.and U. Unluata, 1997. Oceanography of the Black Sea a review of some resent results. ELSEVIER Earth Sci. Rev. 42: 231–272.

    Google Scholar 

  • Ozsoy E., U. Unluata, and Z. Top, 1993. The Mediterranean water evolution, material transport by double diffusive intrusions, and interior mixing in the Black Sea. Prog. Oceanogr. 31: 275–320.

    Article  Google Scholar 

  • Pacanowski R. C. and S. G. H. Philander, 1981. Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr. 11: 1443–1451.

    Article  Google Scholar 

  • Panin G. N., 1987. The Caspian Sea Evaporation and Heat Exchange, Nauka, Moscow, 88 pp. (in Russian).

    Google Scholar 

  • Paulson E. A. and J. J. Simpson, 1977. Irradiance measurements in the upper ocean. J. Phys. Oceanogr. 7: 952–956.

    Article  Google Scholar 

  • Phillips O. M., 1985. Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech. 156: 505–531.

    Article  Google Scholar 

  • Pohlmann T., 1991. Untersuchung hydro- und thermodynamischer Prozesse in der Nordsee mit einem dreidimensionalen numerischen Modell. Berichte aus dem Zentrum für Meeres- und Klimaforschung der Universität Hamburg 23, 116 pp.

    Google Scholar 

  • Pohlmann T., 1996a. Predicting the thermocline in a circulation model of the North Sea: Model description, calibration and verification. Cont. Shelf Res. 16(2): 131–146.

    Google Scholar 

  • Pohlmann T., 1996b. Calculating the annual cycle of the vertical eddy viscosity in the North Sea with a three-dimensional circulation model. Cont. Shelf Res. 16(2): 147–161.

    Google Scholar 

  • Pohlmann T., 1996c. Calculating the development of the thermal vertical stratification in the North Sea with a three-dimensional circulation model. Cont. Shelf Res. 16(2): 163–194.

    Google Scholar 

  • Pohlmann T., 1996d, Simulating the heat storage in the North Sea with a three-dimensional circulation model. Cont. Shelf Res. 16(2): 195–213.

    Google Scholar 

  • Pohlmann T., 2003. Eine Bewertung der hydro-thermodynamischen Nordseemodellierung. Berichte aus dem Zentrum für Meeres- und Klimaforschung der Universität Hamburg, Reihe B, Heft 46, 141 pp.

    Google Scholar 

  • Prandle D., ed., 2000. Pre-operational modelling of the shelf seas of Europe (PROMISE). Coast. Eng. 41, ,359 pp.

    Google Scholar 

  • Proctor R., 1997. NOMADS – North Sea Model Advection-Dispersion Study. Final Report, POL Internal Document 10, 855 pp.

    Google Scholar 

  • Rodionov S. N., 1994. Global and Regional Climate Interaction: The Caspian Sea Experience. Water Technology Library V, Kluver Academic Publisher, Dordrecht, 241 pp.

    Google Scholar 

  • Roulett G. and G. Madec, 2000. Salt conservation, free surface, and varying levels: a new formulation for ocean general circulation models. J. Geophys. Res. 105(C10): 23927–23942.

    Article  Google Scholar 

  • Ruddick K. (ed., 1997). Processes in regions of freshwater influence (PROFILE). J. Mar. Syst. 12, 323 pp.

    Google Scholar 

  • Samoilenko V. S. and A. I. Sachkova (eds., 1963), Hydrometerological Atlasses of Caspian and Aral Seas, Leningrad: Gidrometeoizdat, 1963, 179 pp.

    Google Scholar 

  • Sandstrom I. W. and B. Helland-Hansen, 1903. über die Berechnung von Meeresströrnungen. Rep. on Norw. Fish. and Marine Investig 2(4).

    Google Scholar 

  • Sarkisyan A., 1977. The diagnostic calculation of large-scale oceanic circulation. In: Goldberg, E. (ed.). The Sea, Vol. VI: Marine Modelling, Wiley & Sons, New York, 363–458.

    Google Scholar 

  • Sarkisyan A. S., B. R. Zaripov, A. N. Kosarev, and D. G. Rzheplinski, 1976. The Caspian Sea currents diagnostic calculation. Izv. AN, Fizika Atmos. i Okeana 12(10): 1106–1110 (in Russian).

    Google Scholar 

  • Sarkisyan A. S., and T. Z. Dzioev, 1974. A numerical model and calculation of currents in the Black Sea. Meteorologia I Gidrologia 3: 70–76 (in Russian).

    Google Scholar 

  • Sarkisyan A. S., Y. L. Demin, A. L. Brekhovskikh, and T. V. Shakhanova, 1986. Methods and the Computational Results on World Ocean Circulation. Hydrometeoizdat, Leningrad, 160 pp. (in Russian).

    Google Scholar 

  • Saydam C., S. Tugrul, O. Basturk, and T. Oguz, 1993. Identification of the oxic/anoxic interface by isopycnal surfaces in the Black Sea. Deep-Sea Res. 40: 1405–1412.

    Article  Google Scholar 

  • Schrum C. and J. O. Backhaus, 1999. Sensitivity of atmosphere-ocean heat exchange and heat content in North Sea and Baltic Sea. A comparitive Assessment. Tellus 51A: 526–249.

    Google Scholar 

  • Semenov E. B., 2004. Numerical modelling of the White Sea dynamics and the problem of monitoring. Izv. RAN 40(1): 128–141.

    Google Scholar 

  • Semenov E. V., 1989. Ein numerisches Schema der vierdimensionalen Analyse von thermohalinen Feldmessungen im Ozean. Berlin: Beitr. Meereskd 60: 41–52.

    Google Scholar 

  • Semenov E. V. and M. V. Luneva, 1999, On joint effect of tide, stratification and vertical turbulent mixing on hydrophysical fields formation in the White Sea, Izv. AN, Atmos. and Ocean Phys. 35(5): 660–678.

    Google Scholar 

  • Seventh Report of the Joint Panel on Oceanographic Tables and Standards, 1976. UNESCO Techn. Papers Mar. Sci. 24, Appendix I, 39–54.

    Google Scholar 

  • Stanev E. V., V. M. Roussenov, N. H. Rachev, and J. V. Staneva, 1995. Sea response to atmospheric variability. Model study for the Black Sea. J. Mar. Sys. 6: 241–267.

    Article  Google Scholar 

  • Staneva J. V. and E. V. Stanev, 1998. Oceanic response to atmospheric forcing derived from different climatic data sets. Intercomparison study for the black sea. Oceanol. Acta 21: 383–417.

    Article  Google Scholar 

  • Staneva J. V., E. V. Stanev, and N. H. Rachev, 1995. Heat balance estimates using the atmospheric ’I analysis data: a case study for the Black sea. J. Geophys. Res. 100(C9): 18581–18596.

    Article  Google Scholar 

  • Shtockman W., 1938. An investigation of kinematic of the medium parts of Caspian Sea western coastal currents. Transactions of the Azerbaidjan Scientific-Investigative Fishery station, Baku, V 1, 76 pp. (in Russian).

    Google Scholar 

  • Sündermann J. (ed., 1994). Circulation and Contaminant Fluxes in the North Sea, Springer, Heidelberg, 654 pp.

    Google Scholar 

  • Sündermann J., G. Becker, P. Damm, D. van den Eynde, R. Laane, W. van Leussen, T. Pohlmann, W. van Raaphorst, G. Radach, H. Schultz, and M. Visser, 1996. Decadal variability on the North-West European shelf. Dt. Hydrogr. Z. 48: 365–400.

    Article  Google Scholar 

  • Sündermann J., S. Beddig, I. Kröncke, G. Radach, and H. Schlünzen, 2001. The changing North Sea – knowledge, speculation and new challenges. Berichte aus dem Zentrum für Meeres- und Klimaforschung der Universität Hamburg, Reihe Z, Heft 3, 358 pp.

    Google Scholar 

  • Sündermann J. and W. Lenz (eds., 1983). North Sea Dynamics, Springer, Heidelberg, 693 pp.

    Google Scholar 

  • Sur H. I., E. Ozsoy, and R. Ibrayev, 1998, Satellite – derived flow characteristcs of the Caspian Sea. In: D. Halpern. Satellites, Oceanography and Society Elsevier Science B.V., Amsterdam, 289–297.

    Google Scholar 

  • Terziev F. S., A. N. Kosarev, and A.A. Kerimov, 1992. Hydrometeorology and Hydrochemistry of the USSR Seas, V6, The Caspian Sea, Issue 1 Hydrometeorological Conditions, Hydrometeoizdat, St. Petersburg, 359 pp. (in Russian).

    Google Scholar 

  • Timofeev N.A., 1983. The Oceans Radiational Regime, Naukova Dumka, Kiev (in Russian).

    Google Scholar 

  • Titov V. B., 2003a. Effect of multiyear variability of climatic conditions on the hydrologic structure and interannual restoration of the cold intermediate layer in the Black Sea, Okeanologiya 43: 176–184.

    Google Scholar 

  • Titov V. B., 2003b. Influence of multi-year variations in climatic conditions on the hydrologic structure and inter-annual ventilation of the cold intermediate layer in the Black Sea, Okeanologiya 43: 176–184.

    Google Scholar 

  • Tolmazin D. L., 1985. Changing coastal oceanography of the Black Sea, 11. Mediterranean effluent. Prog. Oceanogr. 15: 277–316.

    Article  Google Scholar 

  • Trukhchev D., A. Kosarev, D. Ivanova, and V. Tuzhilkin, 1995. Numerical analysis of the general circulation in the Caspian Sea. Comptes Rendus de l’Academie Bulgare des Sciences, Sofia 48(10): 35–38.

    Google Scholar 

  • Trukhchev D. and R. Ibrayev, 1997. Seasonal variability of the Black Sea climatic circulation. Sensitivity to change: Black Sea, Baltic Sea and North Sea. NATO ASI Series, Kluwer Academic Publishers, Dordrecht, N 27, 365–374.

    Google Scholar 

  • Tugrul S., O. Basturk, C. Saydam, and A. Yilmaz, 1992. Changes in the hydrochemistry of the Black Sea inferred from water density profiles. Nature 359: 137–139.

    Article  Google Scholar 

  • Turkes M., U. Siimer. and G. Kilig, 1995. Variations and trends in annual mean air temperatures in Turkey with respect to climatic variability. Int. J. Climatol. 15: 557–569.

    Article  Google Scholar 

  • Turner J. S., 1973. Buoyancy Effects in Fluids. Cambridge University Press, Cambridge, 367 pp.

    Google Scholar 

  • Turner J. S., 1978. Double-diffusive intrusions into a density gradient. J. Geophys. Res. 83: 2887–2901.

    Article  Google Scholar 

  • Tuzhilkin V. S., A. N. Kosarev, D. I. Trukhchev, and D. P. Ivanova, 1997. Seasonal peculiarities of the Caspian Sea deeper parts general circulation. Meteorologiya I Gidrologiya 1: 91–99 (in Russian).

    Google Scholar 

  • Unluata U., T. Oguz, M. A. Latif, and E. Ozsoy, 1989. On the physical oceanography of the Turkish Straits, In: J. Pratt (ed.). The Physical Ocenography of Sea Smirs, NATO AS1 Scr, Ser. c, Kluwer Academic Publishers, Nonvell, MA, pp. 25–60.

    Google Scholar 

  • Whitehead J. A., G. K. Korotaev, and S. N. Bulgakov, 1998. Convective circulation in mesoscale abyssal basins. Geophys. Astrophys. Fluid Dynamics 89: 169–203.

    Article  Google Scholar 

  • Yuce H., 1990. Investigation of the Mediterranean water in the Strait of Istanbul (Bosphorus) and the Black Sea. Oceanol. Acta 13: 177–186.

    Google Scholar 

  • Zaitsev, Y. P., 1993. Impacts of eutrophication on the Black Sea fauna, studies and reviews. Gen. Fish. Counc. Medit. 64: 59–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem S. Sarkisyan .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sarkisyan, A.S., Sündermann, J.E. (2009). Modelling Climate Variability of Selected Shelf Seas. In: Modelling Ocean Climate Variability. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9208-4_6

Download citation

Publish with us

Policies and ethics