Synthesis of Models and Observed Data

  • Artem S. Sarkisyan
  • Jürgen E. Sündermann


We consider the behavior of prognostic models in the initial phase starting with observed data, i.e. time and space averaged T and S fields. Analysis of the initial stage energetics shows that a dramatic fall of kinetic energy happens during the first six hours of integration. Here and in other parts of the book we justify our opinion on the necessity to monitor the calculation energetics from the very initial stage. Further, in this chapter a method used by WOCE and other programs is presented of T, S sections data processing generating the three velocity components and enriching the observed T, S data. Then based on Kalman filtering, a model of a four-dimensional analysis of hydrophysical ocean fields is presented, its accuracy tested and applied to data from several regions of the North Atlantic.


WOCE data processing Four-dimensional analysis Accuracy Energetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baranov E. I., A. V. Kolinko, and V. S. Regentovskii, 1987. Climatic and anomalous oceanographic conditions of the Newfoundland energy-active zone and their relation to the atmospheric circulation. Itogi Nauki i Tekhniki, Ser. Atmosfera, Okean, Kosmos. Programma “Razrezy”, Moscow: VINITI 8: 82–91 (in Russian).Google Scholar
  2. Bryan K., 1969. A numerical method for the study of the circulation of the world ocean. J. Comp. Phys. 4: 347–376.CrossRefGoogle Scholar
  3. Böning C. W., R. Döscher, and R. G. Budich, 1991. Seasonal transport variation in the Western Subtropical North Atlantic: Experiments with an Eddy resolving model. J. Phys. Oceanogr., 21: 1271–1289.CrossRefGoogle Scholar
  4. Bulushev M. G. and A. S. Sarkisyan, 1996. Energetics of the equatorial current adjustments initial stage. Izv. Acad. Sci. Atmos. Ocean Phys. 32(5): 600–612.Google Scholar
  5. Conkright M. E., S. Levitus, and T. P. Boyer, 1994. World Ocean Atlas. Vol. 3: Salinity, Vol. 4: Temperature. Washington, DC: U.S. Dept. Commerce.Google Scholar
  6. Demin Yu. L. and A. S. Sarkisyan, 1977. Calculation of equatorial currents. J. Mar. Res. 35: 339–356.Google Scholar
  7. Demyshev S. G. and G. K. Korotaev, 1992. Numerical Energy-Balanced Model of Baroclinic Currents in an Ocean with a Rough Bottom on a Grid C (Numerical Models and Results of Calibration Calculations of Currents in the Atlantic). Moscow, 163–231.Google Scholar
  8. Fillenbaum E. R., T. N. Lee, W. E. Johns, and R. J. Zantopp, 1997. Meridional heat transport variability at 26.5 °N in the North Atlantic. J. Phys. Oceanogr. 27: 153–174.CrossRefGoogle Scholar
  9. Fukumori I., J. Benveniste, C. Wunsch, and D. B. Haidvogel, 1993. Assimilation of sea-surface topography into an ocean circulation model using a steady-state smoother. J. Phys. Oceanogr. 23: 1831–1855.CrossRefGoogle Scholar
  10. Gandin L. S. and R. L. Kagan, 1976. Statisticheskie metody interpolyatsii meteorologicheskikh dannyk (Statistical Methods of Interpolating Meteorological Fields). Leningrad: Gidrometeoizdat (in Russian).Google Scholar
  11. Hall M. and H. Bryden, 1982. Direct estimates and mechanism of ocean heat transport. Deep-Sea Res. 29: 339–359.CrossRefGoogle Scholar
  12. Holland W. R. and P. Malanotte-Rizzoli, 1989. Assimilation of altimeter data into an ocean circulation model: Space versus time resolution studies. J. Phys. Oceanogr. 19: 1507–1534.Google Scholar
  13. Ibraev R. A., 1993. Reconstruction of the climatic characteristics of the Gulf stream. Izv. Akad. Nauk, Fiz. Atmos. Okeana 29(6): 803–814.Google Scholar
  14. Ivanov Yu. A., K. V. Lebedev, and A. S. Sarkisyan, 1997. Ocean modeling by general adjustment. Izv. Ross. Akad. Nauk, Atmos. Ocean Phys. 33(6): 812–818 (in Russian).Google Scholar
  15. Kalnay E., M. Kanamitsu, R. Kister, W. Collins., D. Deaven, L. Gandin, M. Iredel, S. Saha, G. White, J. Wool, Y. Zhu, M. Chellian, W. Ebisuzaki, W. Higgins, J. Janoviak, K. C. Mo, C. Ropelewski, A. Leetmaa, R. Reynolds, and R. Jenne, 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc 77: 437–471.CrossRefGoogle Scholar
  16. Knysh V. V., V. A. Moiseenko, A. S. Sarkisyan, and I. E. Timchenko, 1980. Combined use of measurements on hydrophysical ocean fields in a four-dimensional analysis. Dokl. Akad. Nauk SSSR 252(4): 832–836.Google Scholar
  17. Knysh V. V., 1982. Multi-element four-dimensional analysis of the main hydrophysical fields of the ocean. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 18(4): 391–398.Google Scholar
  18. Knysh V. V., V. A. Moiseenko, and V. V. Chernov, 1988. Some results of a four-dimensional analysis of hydrophysical fields of the Tropical Atlantic. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 24(7): 744–752.Google Scholar
  19. Knysh V. V., V. A. Moiseenko, and V. V. Chernov, 1990. Monitoring hydrophysical fields of the newfoundland energy-active zone on the basis of a four-dimensional analysis of 1982–1986 observational data. Itogi Nauki i Tekhniki, Ser. Atmosfera, Okean, Kosmos–Prograirana “Razrezy”. Moscow: VINITI, 13: 154–167 (in Russian).Google Scholar
  20. Knysh V. V., O. A. Saenko, and A. S. Sarkisyan, 1996. Method of assimilation of altimeter data and its test in the tropical North Atlantic. Russ. J. Numer. Anal. Math. Model. 11(5): 333–409.Google Scholar
  21. Knysh V. V., S. G. Demyshev, G. K. Korotayev, and A. S. Sarkisyan, 2001. Four-dimensional climate of seasonal Black Sea circulation. Russ. J. Numer. Anal. Math. Model. 16(5): 409–426.Google Scholar
  22. Knysh V. V. and A. S. Sarkisyan, 2003. Four dimensional analysis of Hydrophysical ocean and sea fields. Numerical experiments and reconstructions. Izv. Acad. Sci. Atmos. Ocean Phys. 39(6): 816–833.Google Scholar
  23. Korotaev G. K., O. A. Saenko, and Ch. D. Koblinski, S. G. Demyshev, and V. V. Knysh, 1998. Accuracy estimation, methods, and some results of TOPEX/POSEIDON data assimilation in a model of the Black Sea general circulation. lssled. Zemli Kosmosa 3: 3–17.Google Scholar
  24. Lee T. N., W. Johns, K. Schott, and R. Zantopp, 1990. Western boundary current structure and variability East of Abaco, Bahamas at 26.5 °N. J. Phys. Oceanogr. 20: 446–466.CrossRefGoogle Scholar
  25. Malanotte-Rizzoli P., R. E. Young, and D. B. Haidvogel, 1989. Initialization and data assimilation experiments with primitive equation model. Dyn. Atmos. Oceans 13: 349–378.CrossRefGoogle Scholar
  26. Marchuk G. I., 1969. Numerical solution of the poincare problem for the ocean circulation. Dokl. Akad. Nauk SSSR 165(5): 1041–1044.Google Scholar
  27. Marchuk G. I. and A. S. Sarkisyan, 1988. Mathematical Modeling of Ocean Circulation. Springer-Verlag, 262pp.Google Scholar
  28. Marsh R., M. J. Roberts, R. A. Wood, and A. L. New., 1996. An intercomparison of a Bryan-Cox-type ocean model and an isopycnic ocean model. Part II: The subtropical gyre and meridional heat transport. J. Phys. Oceanogr. 26: 1528–1550.CrossRefGoogle Scholar
  29. Matsuno T., 1966. Numerical integrations of the primitive equations by a simulated backward difference method. J. Meteorol. Soc. Jpn. Ser. 2, 44: 76–84.Google Scholar
  30. Mellor G. L. and T. Ezer, 1991. A gulf stream model and an altimetry assimilation scheme. J. Geophys. Res. 96: 8779–8795.CrossRefGoogle Scholar
  31. Molinari R. L., E. Lohns, and I. F. Festa, 1990. The annual cycle of meridional heat flux in the Atlantic Ocean at 26.5 °N. J. Geophys. Res. 20: 476–482.Google Scholar
  32. Pinardi N., A. Rosati and R. C. Pacanowski, 1995. The sea surface pressure formulation of rigid lid models. Implications for altimeter data assimilation studies. J. Mar. Syst. 6: 109–119.CrossRefGoogle Scholar
  33. Roemmich D. and C. Wunsch, 1985. Two transatlantic sections: Meridional circulation and heat flux in the sub tropical North Atlantic. Deep-Sea Res. 32: 619–664.CrossRefGoogle Scholar
  34. Rosenfeld L. K., R. L. Molinari, and K. D. Leaman, 1989. Observed and modeled annual cycle of transport in the straits of Florida and East of Abaco Island, the Bahama 26.5 °N. J. Geophys. Res. C 94(4): 4867–4878.CrossRefGoogle Scholar
  35. Sakawa Y., 1972. Optimal filtering in linear distributed parameter system. Int. J. Contr. 16(1): 115–127.CrossRefGoogle Scholar
  36. Sarkisyan A. S. and Ju. L. Demin, 1983. A semidiagnostic method of sea currents calculation. Large-Scale Oceanographic Experiments in the WCRP 2(1): 210–214.Google Scholar
  37. Sarkisyan A. S., E. V. Semenov, and V. V. Efimov, 1989. Numerical model of a four-dimensional analysis of on thermohaline measurements. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 25(1): 53–63.Google Scholar
  38. Sarkisyan A. S. and A. N. Sidorova, 1998. Numerical modeling of physical characteristics in the neighborhood of an isolated hydrologic section in the Barents Sea. Russ. J. Numer. Anal. Math. Modell. 13(6): 537–549.CrossRefGoogle Scholar
  39. Sarkisyan A. S. and S. Levitus, 1999. Ocean climate characteristics as obtained by amalgamating WOCE-Levitus hydrographic data. EOS Trans. Am. Geophys. Union 80(49): OS210-03.Google Scholar
  40. Sarkisyan G. A. and V. N. Stepanov, 1999. Method for calculating physical characteristics of the ocean from an individual hydrologic section. Izv. Akad. Nauk, Fiz. Atmos. Okeana, 35(6): 550–555; Izv. Atmos. Ocean. Phys. (Engl. Transl.), 35(6): 501–505.Google Scholar
  41. Sarmiento J. L. and K. Bryan, 1982. An ocean transport model for the North Atlantic. J. Geophys. Res. 87: 394–408.CrossRefGoogle Scholar
  42. Schmitz W. J. and M. S. McCartney, 1993. On the North Atlantic circulation. Rev. Geophys. 31: 29–49.CrossRefGoogle Scholar
  43. Schott F. A., J. Fischer, J. Reppin, and U. Send, 1993. On mean and seasonal currents and transports at the western boundary of the Equatorial Atlantic. J. Geophys. Res. 98: 14353–14368.CrossRefGoogle Scholar
  44. Semyonov E. V., 1981. Calculation of vertical motions in numerical models of water circulation. Okeanologiya (Moscow) 21(3): 433–434.Google Scholar
  45. Staneva J. V. and E. V. Stanev, 1998. Oceanic response to atmospheric forcing derived from different climatic data sets: Intercomparison study for the Black Sea. Oceanol. Acta 21(3): 383–417.CrossRefGoogle Scholar
  46. Timchenko I. E., 1981. Dynamic-Stochastic Models of the State of the Ocean. Kiev: Naukova Dumka (in Russian).Google Scholar
  47. Treguier A. M., T. Reynaud, T. Pichevin, B. Barnier, J. M. Molines, A. de Miranda, C. Messanger, J. O. Beismann, G. Madec, N. Grima, M. Imbard, C. Le Provost, 1999. The CLIPPER project: High resolution modeling of the Atlantic. Int. WOCE Newsl. 36: 3–5.Google Scholar
  48. Verron J., 1990. Altimeter data assimilation into an ocean circulation model: Sensitivity to orbital parameters. J. Geophys. Res. 95: 11443–11459.CrossRefGoogle Scholar
  49. Weatherly G. L., 1972. A study of the bottom boundary layer of the Florida current. J. Phys. Oceanogr. 2: 54–72.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Russian Academy of Sciences, Institute of Numerical MathematicsGubkina 8Russia 119991
  2. 2.Institute of Oceanography, University of Hamburg20146 HamburgGermany

Personalised recommendations