Advertisement

Probing Dark Energy with Cosmological Redshift Surveys at the VLT

  • L. Guzzo
  • the VVDS Consortium
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP)

Large redshift surveys of galaxies play a key role in the quest for the origin of cosmic acceleration. In this context, it has recently been pointed out [L. Guzzo et al. in Nature 451, 541 (2008)] that redshift-space distortions due to galaxy peculiar motions can be used to trace the growth rate of structure f(z) back in time. Coupled to estimates of the expansion history H(z) as those provided by Type Ia supernovae, this can distinguish models with a truly extra “dark energy” component from theories in which the acceleration is explained by modifying the laws of gravity. Current measurements are not accurate enough to distinguish between these two alternatives. According to extended simulations, this will become possible with an order of magnitude increase in the sampled volume and number of redshifts at similar depth, i.e. measuring >100 000 galaxies over nearly 108 h−3 Mpc3. The VLT with VIMOS can play an important role in this endeavour, filling the gap between current surveys and projects foreseen beyond year 2015, based on new ground-based or space-born mega-MOS spectrographs.

Keywords

Dark Energy Cosmic Acceleration Distortion Model Hubble Diagram Expansion History 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Guzzo, M. Pierleoni, B. Meneux et al., Nature 451, 541 (2008) CrossRefADSGoogle Scholar
  2. 2.
    A.G. Riess et al., Astron. J. 116, 1009 (1998) CrossRefADSGoogle Scholar
  3. 3.
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999) CrossRefADSGoogle Scholar
  4. 4.
    M.S. Turner, D.J. Huterer, Phys. Soc. Jpn. 76, 111015 (2007) CrossRefADSGoogle Scholar
  5. 5.
    E.J. Copeland, M. Sami, S. Tsujikawa, preprint, hep-th/0603057
  6. 6.
    L. Amendola, Mon. Not. R. Astron. Soc. 312, 521–530 (2000) CrossRefADSGoogle Scholar
  7. 7.
    G. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B 485, 208–214 (2000) MATHCrossRefADSMathSciNetGoogle Scholar
  8. 8.
    E.V. Linder, Phys. Rev. D 72, 043529 (2005) CrossRefADSGoogle Scholar
  9. 9.
    L. Wang, P.J. Steinhardt, Astrophys. J. 508, 483 (1998) CrossRefADSGoogle Scholar
  10. 10.
    R. Lue, R. Scoccimarro, G.D. Starkman, Phys. Rev. D 69, 124015 (2004) CrossRefADSGoogle Scholar
  11. 11.
    A.J.S. Hamilton, in: The Evolving Universe. ASSL, vol. 231 (Kluwer, 1998), p. 185 Google Scholar
  12. 12.
    E. Hawkins et al., Mon. Not. R. Astron. Soc. 346, 78 (2003) CrossRefADSGoogle Scholar
  13. 13.
    L. Verde et al., Mon. Not. R. Astron. Soc. 335, 432 (2002) CrossRefADSGoogle Scholar
  14. 14.
    O. Le Fèvre et al., Astron. Astrophys. 439, 845 (2005) CrossRefADSGoogle Scholar
  15. 15.
    B. Garilli et al., submitted to Astron. Astrophys. (2008) Google Scholar
  16. 16.
    S.D. Landy, A.S. Szalay, Astrophys. J. 412, 64 (1993) CrossRefADSGoogle Scholar
  17. 17.
    M. Pierleoni et al. (2008), in preparation Google Scholar
  18. 18.
    G. De Lucia, J. Blaizot, Mon. Not. R. Astron. Soc. 375, 2 (2006) CrossRefGoogle Scholar
  19. 19.
    D.N. Spergel et al., Astrophys. J. Supp. 170, 377 (2007) CrossRefADSGoogle Scholar
  20. 20.
    N.P. Ross et al., Mon. Not. R. Astron. Soc. 381, 573 Google Scholar
  21. 21.
    O. Ilbert et al., Astron. Astrophys. 457, 841 (2006) CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2009

Authors and Affiliations

  1. 1.INAF-Osservatorio Astronomico di BreraMilanItaly
  2. 2.Max Planck Institut für Extraterrestrische PhysikGarchingGermany
  3. 3.Excellence Cluster “Universe”GarchingGermany

Personalised recommendations