Skip to main content
Book cover

Epigenomics pp 101–118Cite as

Epigenetic Profiling of Histone Variants

  • Chapter

Abstract

Most histones are assembled into nucleosomes behind the replication fork to package newly synthesized DNA, but some histones are deposited independent of replication. Replication-independent histone variants of H3 and H2A have evolved to participate in gene regulation, transcriptional elongation, chromosome segregation and DNA repair in almost all eukaryotes. Because histone variants are deposited on a chromatinized template, they replace canonical replication-coupled histones in processes that involve partial or complete unravelling of nucleosomes. The recent application of high-resolution profiling to histone variants thus provides a genome-wide view of active processes that disrupt chromatin. Replacement of a canonical histone with a variant can profoundly alter chromatin properties and erase histone modifications. As such, the epigenomic profiling of histone variants and nucleosome positioning reveals both nucleosome dynamics and the basic organization of the epigenome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins, M.W., Howar, S.R., and Tyler, J.K. 2004. Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol Cell 14: 657–666.

    Article  PubMed  CAS  Google Scholar 

  • Ahmad, K. and Henikoff, S. 2002. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9: 1191–1200.

    Article  PubMed  CAS  Google Scholar 

  • Albert, I., Mavrich, T.N., Tomsho, L.P., Qi, J., Zanton, S.J., Schuster, S.C., and Pugh, B.F. 2007a. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446: 572–576.

    Article  CAS  Google Scholar 

  • Albert, T.J., Molla, M.N., Muzny, D.M., Nazareth, L., Wheeler, D., Song, X., Richmond, T.A., Middle, C.M., Rodesch, M.J., Packard, C.J., Weinstock, G.M., and Gibbs, R.A. 2007b. Direct selection of human genomic loci by microarray hybridization. Nat Methods 4: 903–905.

    Article  CAS  Google Scholar 

  • Allis, C.D., Jenuwein, T., and Reinberg, D. 2006. Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Alonso, A., Fritz, B., Hasson, D., Abrusan, G., Cheung, F., Yoda, K., Radlwimmer, B., Ladurner, A.G., and Warburton, P.E. 2007. Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres. Genome Biol 8: R148.

    Article  PubMed  Google Scholar 

  • Amor, D.J., Kalitsis, P., Sumer, H., and Choo, K.H. 2004. Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol 14: 359–368.

    Article  PubMed  CAS  Google Scholar 

  • Angelov, D., Molla, A., Perche, P.Y., Hans, F., Cote, J., Khochbin, S., Bouvet, P., and Dimitrov, S. 2003. The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling. Mol Cell 11: 1033–1041.

    Article  PubMed  CAS  Google Scholar 

  • Annunziato, A.T. 2005. Split decision: What happens to nucleosomes during DNA replication? J Biol Chem 280: 12065–12068.

    Article  PubMed  CAS  Google Scholar 

  • Bao, Y., Konesky, K., Park, Y.J., Rosu, S., Dyer, P.N., Rangasamy, D., Tremethick, D.J., Laybourn, P.J., and Luger, K. 2004. Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. Embo J 23: 3314–3324.

    Article  PubMed  CAS  Google Scholar 

  • Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I., and Zhao, K. 2007. High-resolution profiling of histone methylations in the human genome. Cell 129: 823–837.

    Article  PubMed  CAS  Google Scholar 

  • Belotserkovskaya, R., Oh, S., Bondarenko, V.A., Orphanides, G., Studitsky, V.M., and Reinberg, D. 2003. FACT facilitates transcription-dependent nucleosome alteration. Science 301: 1090–1093.

    Article  PubMed  CAS  Google Scholar 

  • Berman, B.P., Pfeiffer, B.D., Laverty, T.R., Salzberg, S.L., Rubin, G.M., Eisen, M.B., and Celniker, S.E. 2004. Computational identification of developmental enhancers: conservation and function of transcription factor binding-site clusters in Drosophila melanogaster and Drosophila pseudoobscura. Genome Biol 5: R61.

    Article  PubMed  Google Scholar 

  • Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber, S.L., and Lander, E.S. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125: 315–326.

    Article  PubMed  CAS  Google Scholar 

  • Bevan, M., Mayer, K., White, O., Eisen, J.A., Preuss, D., Bureau, T., Salzberg, S.L., and Mewes, H.-W. 2001. Sequence and analysis of the Arabidopsis genome. Current Opinions in Plant Biology 4: 105–110.

    Article  CAS  Google Scholar 

  • Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R.S., and Zhang, Y. 2002. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298: 1039–1043.

    Article  PubMed  CAS  Google Scholar 

  • Catez, F., Ueda, T., and Bustin, M. 2006. Determinants of histone H1 mobility and chromatin binding in living cells. Nat Struct Mol Biol 13: 305–310.

    Article  PubMed  CAS  Google Scholar 

  • Celniker, S.E. and Rubin, G.M. 2003. The Drosophila melanogaster genome. Annu Rev Genomics Hum Genet 4: 89–117.

    Article  PubMed  CAS  Google Scholar 

  • Chadwick, B.P. and Willard, H.F. 2001. A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome. J Cell Biol 152: 375–384.

    Article  PubMed  CAS  Google Scholar 

  • Chadwick, B.P. and Willard, H.F. 2004. Multiple spatially distinct types of facultative heterochromatin on the human inactive X chromosome. Proc Natl Acad Sci USA 101: 17450–17455.

    Article  PubMed  CAS  Google Scholar 

  • Dalal, Y., Furuyama, T., Vermaak, D., and Henikoff, S. 2007a. Structure, dynamics, and evolution of centromeric nucleosomes. Proc Natl Acad Sci USA 104: 15974–15981.

    Article  CAS  Google Scholar 

  • Dalal, Y., Wang, H., Lindsay, S., and Henikoff, S. 2007b. Tetrameric structure of centromeric nucleosomes in Drosophila cells. PLoS Biol 5: e218.

    Article  Google Scholar 

  • de Boer, E., Rodriguez, P., Bonte, E., Krijgsveld, J., Katsantoni, E., Heck, A., Grosveld, F., and Strouboulis, J. 2003. Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc Natl Acad Sci USA 100: 7480–7485.

    Article  PubMed  Google Scholar 

  • Dion, M., Kaplan, T., Friedman, N., and Rando, O.J. 2007. Dynamics of replication-independent histone turnover in budding yeast. Science 315: 1405–1408.

    Article  PubMed  CAS  Google Scholar 

  • ENCODE project consortium et al. 2007. Identification and analysis of functional elements in 1 of the human genome by the ENCODE pilot project. Nature 447: 799–816.

    Article  Google Scholar 

  • English, C.M., Adkins, M.W., Carson, J.J., Churchill, M.E., and Tyler, J.K. 2006. Structural basis for the histone chaperone activity of Asf1. Cell 127: 495–508.

    Article  PubMed  CAS  Google Scholar 

  • Furuyama, S. and Biggins, S. 2007. Centromere identity is specified by a single centromeric nucleosome in budding yeast. Proc Natl Acad Sci USA104: 14706–14711.

    Article  PubMed  CAS  Google Scholar 

  • Furuyama, T., Dalal, Y., and Henikoff, S. 2006. Chaperone-mediated assembly of centromeric chromatin in vitro. Proc Natl Acad Sci U S A 103: 6172–6177.

    Article  PubMed  CAS  Google Scholar 

  • Govin, J., Escoffier, E., Rousseaux, S., Kuhn, L., Ferro, M., Thevenon, J., Catena, R., Davidson, I., Garin, J., Khochbin, S., and Caron, C. 2007. Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. J Cell Biol 176: 283–294.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, T., Fujita, Y., Iwasaki, O., Adachi, Y., Takahashi, K., and Yanagida, M. 2004. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118: 715–729.

    Article  PubMed  CAS  Google Scholar 

  • Henikoff, S. and Ahmad, K. 2005. Assembly of variant histones into chromatin. Ann Rev Cell Dev Biol 21: 133–153.

    Article  CAS  Google Scholar 

  • Heun, P., Erhardt, S., Blower, M.D., Weiss, S., Skora, A.D., and Karpen, G.H. 2006. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10: 303–315.

    Article  PubMed  CAS  Google Scholar 

  • Hillier, L.W., Coulson, A., Murray, J.I., Bao, Z., Sulston, J.E., and Waterston, R.H. 2005. Genomics in C. elegans: so many genes, such a little worm. Genome Res 15: 1651–1660.

    Article  PubMed  CAS  Google Scholar 

  • Hodges, E., Xuan, Z., Balija, V., Kramer, M., Molla, M.N., Smith, S.W., Middle, C.M., Rodesch, M.J., Albert, T.J., Hannon, G.J., and McCombie, W.R. 2007. Genome-wide in situ exon capture for selective resequencing. Nat Genet 39: 1522–1527.

    Article  PubMed  CAS  Google Scholar 

  • Hoheisel, J.D. 2006. Microarray technology: beyond transcript profiling and genotype analysis. Nat Rev Genet 7: 200–210.

    Article  PubMed  CAS  Google Scholar 

  • Hutchison, C.A., 3rd. 2007. DNA sequencing: bench to bedside and beyond. Nucleic Acids Res 35: 6227–6237.

    Article  PubMed  CAS  Google Scholar 

  • Iyer, V.R., Horak, C.E., Scafe, C.S., Botstein, D., Snyder, M., and Brown, P.O. 2001. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409: 533–538.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, V. 1988. Deposition of newly synthesized histones: hybrid nucleosomes are not tandemly arranged on daughter DNA strands. Biochemistry (Mosc) 27: 2109–2120.

    Article  CAS  Google Scholar 

  • Jamai, A., Imoberdorf, R.M., and Strubin, M. 2007. Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication. Mol Cell 25: 345–355.

    Article  PubMed  CAS  Google Scholar 

  • Janitz, M. 2007. Assigning functions to genes–the main challenge of the post-genomics era. Rev Physiol Biochem Pharmacol 159: 115–129.

    Article  PubMed  CAS  Google Scholar 

  • Jin, C. and Felsenfeld, G. 2006. Distribution of histone H3.3 in hematopoietic cell lineages. Proc Natl Acad Sci U S A 103: 574–579.

    Article  PubMed  CAS  Google Scholar 

  • Jin, C. and Felsenfeld, G. 2007. Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev 21: 1519–1529.

    Article  PubMed  CAS  Google Scholar 

  • Jones, P.A. and Martienssen, R. 2005. A blueprint for a Human Epigenome Project: the AACR Human Epigenome Workshop. Cancer Res 65: 11241–11246.

    Article  PubMed  CAS  Google Scholar 

  • Konev, A.Y., Tribus, M., Park, S.Y., Podhraski, V., Lim, C.Y., Emelyanov, A.V., Vershilova, E., Pirrotta, V., Kadonaga, J.T., Lusser, A., and Fyodorov, D.V. 2007. CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 317: 1087–1090.

    Article  PubMed  CAS  Google Scholar 

  • Kustatscher, G., Hothorn, M., Pugieux, C., Scheffzek, K., and Ladurner, A.G. 2005. Splicing regulates NAD metabolite binding to histone macroH2A. Nat Struct Mol Biol 12: 624–625.

    Article  PubMed  CAS  Google Scholar 

  • Loyola, A. and Almouzni, G. 2004. Histone chaperones, a supporting role in the limelight. Biochim Biophys Acta 1677: 3–11.

    PubMed  CAS  Google Scholar 

  • Malik, H.S. and Henikoff, S. 2003. Phylogenomics of the nucleosome. Nat Struct Biol 10: 882–891.

    Article  PubMed  CAS  Google Scholar 

  • Meneghini, M.D., Wu, M., and Madhani, H.D. 2003. Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent chromatin. Cell 112: 725–736.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T.K., Koche, R.P., Lee, W., Mendenhall, E., O’Donovan, A., Presser, A., Russ, C., Xie, X., Meissner, A., Wernig, M., Jaenisch, R., Nusbaum, C., Lander, E.S., and Bernstein, B.E. 2007. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448: 553–560.

    Article  PubMed  CAS  Google Scholar 

  • Mito, Y., Henikoff, J., and Henikoff, S. 2005. Genome-scale profiling of histone H3.3 replacement patterns. Nat Genet 37: 1090–1097.

    Article  PubMed  CAS  Google Scholar 

  • Mito, Y., Henikoff, J., and Henikoff, S. 2007. Histone replacement marks the boundaries of cis-regulatory domains. Science 315: 1408–1411.

    Article  PubMed  CAS  Google Scholar 

  • Mizuguchi, G., Shen, X., Landry, J., Wu, W.H., Sen, S., and Wu, C. 2004. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303: 343–348.

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Moreno, O., Torras-Llort, M., and Azorin, F. 2006. Proteolysis restricts localization of CID, the centromere-specific histone H3 variant of Drosophila, to centromeres. Nucleic Acids Res 34: 6247–6255.

    Article  PubMed  CAS  Google Scholar 

  • Nagaki, K., Cheng, Z., Ouyang, S., Talbert, P.B., Kim, M., Jones, K.M., Henikoff, S., Buell, C.R., and Jiang, J. 2004. Sequencing of a rice centromere uncovers active genes. Nat Genet 36: 138–145.

    Article  PubMed  CAS  Google Scholar 

  • Natsume, R., Eitoku, M., Akai, Y., Sano, N., Horikoshi, M., and Senda, T. 2007. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 446: 338–341.

    Article  PubMed  CAS  Google Scholar 

  • Ng, R.K. and Gurdon, J.B. 2008. Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nat Cell Biol 10: 102–109.

    Article  PubMed  CAS  Google Scholar 

  • Okou, D.T., Steinberg, K.M., Middle, C., Cutler, D.J., Albert, T.J., and Zwick, M.E. 2007. Microarray-based genomic selection for high-throughput resequencing. Nat Methods 4: 907–909

    Article  PubMed  CAS  Google Scholar 

  • Okuwaki, M., Kato, K., Shimahara, H., Tate, S., and Nagata, K. 2005. Assembly and disassembly of nucleosome core particles containing histone variants by human nucleosome assembly protein I. Mol Cell Biol 25: 10639–10651.

    Article  PubMed  CAS  Google Scholar 

  • Park, Y.J., Chodaparambil, J.V., Bao, Y., McBryant, S.J., and Luger, K. 2005. Nucleosome assembly protein 1 exchanges histone H2A-H2B dimers and assists nucleosome sliding. J Biol Chem 280: 1817–1825.

    Article  PubMed  CAS  Google Scholar 

  • Park, Y.J., Dyer, P.N., Tremethick, D.J., and Luger, K. 2004. A new fluorescence resonance energy transfer approach demonstrates that the histone variant H2AZ stabilizes the histone octamer within the nucleosome. J Biol Chem 279: 24274–24282.

    Article  PubMed  CAS  Google Scholar 

  • Polach, K.J. and Widom, J. 1995. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J Mol Biol 254: 130–149.

    Article  PubMed  CAS  Google Scholar 

  • Polo, S.E., Roche, D., and Almouzni, G. 2006. New histone incorporation marks sites of UV repair in human cells. Cell 127: 481–493.

    Article  PubMed  CAS  Google Scholar 

  • Raisner, R.M., Hartley, P.D., Meneghini, M.D., Bao, M.Z., Liu, C.L., Schreiber, S.L., Rando, O.J., and Madhani, H.D. 2005. Histone variant H2A.Z marks the 5’ ends of both active and inactive genes in euchromatin. Cell 123: 233–248.

    Article  PubMed  CAS  Google Scholar 

  • Ren, B., Robert, F., Wyrick, J.J., Aparicio, O., Jennings, E.G., Simon, I., Zeitlinger, J., Schreiber, J., Hannett, N., Kanin, E., Volkert, T.L., Wilson, C.J., Bell, S.P., and Young, R.A. 2000. Genome-wide location and function of DNA binding proteins. Science 290: 2306–2309.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., Euskirchen, G., Bernier, B., Varhol, R., Delaney, A., Thiessen, N., Griffith, O.L., He, A., Marra, M., Snyder, M., and Jones, S. 2007. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4: 651–657.

    Article  PubMed  CAS  Google Scholar 

  • Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S., and Bonner, W.M. 1998. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273: 5858–5868.

    Article  PubMed  CAS  Google Scholar 

  • Roh, T.Y., Ngau, W.C., Cui, K., Landsman, D., and Zhao, K. 2004. High-resolution genome-wide mapping of histone modifications. Nat Biotechnol 22: 1013–1016.

    Article  PubMed  CAS  Google Scholar 

  • Rufiange, A., Jacques, P.E., Bhat, W., Robert, F., and Nourani, A. 2007. Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. Mol Cell 27: 393–405.

    Article  PubMed  CAS  Google Scholar 

  • Saffery, R., Sumer, H., Hassan, S., Wong, L.H., Craig, J.M., Todokoro, K., Ansderson, M., Stafford, A., and Andy Choo, K.H. 2003. Transcription within a functional human centromere. Mol Cell 12: 509–516.

    Article  PubMed  CAS  Google Scholar 

  • Santisteban, M.S., Kalashnikova, T., and Smith, M.M. 2000. Histone H2A.Z regulates transcription and is partially redundant with nucleosome remodeling complexes. Cell 103: 411–422.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, Y.B., Kahn, T.G., Nix, D.A., Li, X.Y., Bourgon, R., Biggin, M., and Pirrotta, V. 2006. Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nat Genet 38: 700–705.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S. and Stillman, B. 1989. Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58: 15–25.

    Article  PubMed  CAS  Google Scholar 

  • Sun, J.M., Chen, H.Y., Espino, P.S., and Davie, J.R. 2007. Phosphorylated serine 28 of histone H3 is associated with destabilized nucleosomes in transcribed chromatin. Nucleic Acids Res 35: 6640–6647.

    Article  PubMed  CAS  Google Scholar 

  • Tagami, H., Ray-Gallet, D., Almouzni, G., and Nakatani, Y. 2004. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116: 51–61.

    Article  PubMed  CAS  Google Scholar 

  • Thiriet, C. and Hayes, J.J. 2005. Replication-independent core histone dynamics at transcriptionally active loci in vivo. Genes Dev 19: 677–682.

    Article  PubMed  CAS  Google Scholar 

  • Ueda, K., Kinoshita, Y., Xu, Z.J., Ide, N., Ono, M., Akahori, Y., Tanaka, I., and Inoue, M. 2000. Unusual core histones specifically expressed in male gametic cells of Lilium longiflorum. Chromosoma 108: 491–500.

    Article  PubMed  CAS  Google Scholar 

  • van Steensel, B. 2005. Mapping of genetic and epigenetic regulatory networks using microarrays. Nat Genet 37 Suppl: S18–24.

    Article  PubMed  Google Scholar 

  • van Steensel, B., Delrow, J., and Henikoff, S. 2001. Chromatin profiling using targeted DNA adenine methyltransferase. Nat Genet 27: 304–308.

    Article  PubMed  Google Scholar 

  • Varga-Weisz, P.D. 2001. ATP-dependent chromatin remodeling factors: nucleosome shufflers with many missions. Oncogene 20: 3076–3085.

    Article  PubMed  CAS  Google Scholar 

  • Velculescu, V.E., Zhang, L., Vogelstein, B., and Kinzler, K.W. 1995. Serial analysis of gene expression. Science 270: 484–487.

    Article  PubMed  CAS  Google Scholar 

  • Warburton, P.E. 2004. Chromosomal dynamics of human neocentromere formation. Chromosome Res 12: 617–626.

    Article  PubMed  CAS  Google Scholar 

  • Wolffe, A.P. 1992. Chromatin: Structure and function. Academic Press, San Diego.

    Google Scholar 

  • Wolfsberg, T.G., Wetterstrand, K.A., Guyer, M.S., Collins, F.S., and Baxevanis, A.D. 2002. A user’s guide to the human genome. Nat Genet 32 Suppl: 1–79.

    PubMed  Google Scholar 

  • Yan, H., Jin, W., Nagaki, K., Tian, S., Ouyang, S., Buell, C.R., Talbert, P.B., Henikoff, S., and Jiang, J. 2005. Transcription and histone modifications in the recombination-free region spanning a rice centromere. Plant Cell 17: 3227–3238.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Roberts, D.N., and Cairns, B.R. 2005. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123: 219–231.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Henikoff, S. (2009). Epigenetic Profiling of Histone Variants. In: Ferguson-Smith, A.C., Greally, J.M., Martienssen, R.A. (eds) Epigenomics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9187-2_7

Download citation

Publish with us

Policies and ethics