Skip to main content

The Expanding View of Cytosine Methylation

  • Chapter
Epigenomics
  • 1041 Accesses

Abstract

We are currently in an era of increased interest in the role of the epigenome in normal cellular physiology and its role in human disease. Part of this increased interest is driven by new technologies that have allowed us to gain insights never previously possible. Our view of cytosine methylation is expanding not only in terms of how much of the genome we can study at a time, but also in terms of what we think cytosine methylation might be doing functionally. While DNA methylation in mammalian cells has been studied for more than 45 years at this point (srinivasan1962), new insights are revealing the sobering reality that we understand much less about its functional consequences than we may have believed. In this review, the insights gained from new technologies to study cytosine methylation are examined so that we can redefine the paths for further exploration of this intriguing molecular regulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, M.D., et al., Solution structure of the nonmethyl-CpG-binding CXXC domain of the leukaemia-associated MLL histone methyltransferase. EMBO J, 2006. 25(19): 4503–12.

    Article  PubMed  CAS  Google Scholar 

  • Barton, S.C., et al., Genome-wide methylation patterns in normal and uniparental early mouse embryos. Hum Mol Genet, 2001. 10(26): 2983–7.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, B.E., et al., A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 2006. 125: 315–26.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, B.E., et al., Genomic maps and comparative analysis of histone modifications in human and mouse. Cell, 2005. 120(2): 169–81.

    Article  PubMed  CAS  Google Scholar 

  • Bestor, T.H., The DNA methyltransferases of mammals. Hum Mol Genet, 2000. 9(16): 2395–402.

    Article  PubMed  CAS  Google Scholar 

  • Bhasin, M., et al., Prediction of methylated CpGs in DNA sequences using a support vector machine. FEBS Lett, 2005. 579(20): 4302–8.

    Article  PubMed  CAS  Google Scholar 

  • Bird, A.P., CpG-rich islands and the function of DNA methylation. Nature, 1986. 321(6067):209–13.

    Article  PubMed  CAS  Google Scholar 

  • Bird, A.P., et al., Non-methylated CpG-rich islands at the human alpha-globin locus: implications for evolution of the alpha-globin pseudogene. EMBO J, 1987. 6(4): 999–1004.

    PubMed  CAS  Google Scholar 

  • Bock, C., et al., CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genet, 2006. 2(3): e26.

    Article  PubMed  CAS  Google Scholar 

  • Cao, R. and Y. Zhang, The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev, 2004 14(2): 155–64.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, X. and R.M. Blumenthal, Mammalian DNA methyltransferases: a structural perspective. Structure, 2008. 16(3): 341–50.

    Article  PubMed  CAS  Google Scholar 

  • Clark, S.J., J. Harrison, and M. Frommer, CpNpG methylation in mammalian cells. Nature Genet, 1995. 10(1): 20–7.

    Article  PubMed  CAS  Google Scholar 

  • Cokus, S.J., et al., Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 2008. 452(7184): 215–9.

    Article  PubMed  CAS  Google Scholar 

  • Down, T.A., et al., A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nature Biotechnol, 2008. 26(7): 779–85.

    Article  CAS  Google Scholar 

  • Dupont, J.M., et al., De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem, 2004. 333(1): 119–27.

    Article  PubMed  CAS  Google Scholar 

  • Eckhardt, F., et al., DNA methylation profiling of human chromosomes 6, 20 and 22. Nature Genet, 2006.

    Google Scholar 

  • Ehrich, M., et al., Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci USA, 2005. 102(44): 15785–90.

    Article  PubMed  CAS  Google Scholar 

  • Esteller, M., Epigenetics provides a new generation of oncogenes and tumour-suppressor genes. Br J Cancer, 2007. 96 Suppl: R26–30.

    PubMed  Google Scholar 

  • Esteve, P.O., et al., Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev, 2006. 20(22): 3089–103.

    Article  PubMed  CAS  Google Scholar 

  • Fazzari, M.J. and J.M. Greally, Epigenomics: beyond CpG islands. Nature Rev Genet, 2004. 5(6): 446–55.

    Article  CAS  PubMed  Google Scholar 

  • Feinberg, A.P. and B. Tycko, The history of cancer epigenetics. Nature Rev Cancer, 2004. 4(2): 143–53.

    Article  CAS  Google Scholar 

  • Feltus, F.A., et al., Predicting aberrant CpG island methylation. Proc Natl Acad Sci USA, 2003. 100(21): 12253–8.

    Article  PubMed  CAS  Google Scholar 

  • Filion, G.J., et al., A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol Cell Biol, 2006. 26(1): 169–81.

    Article  PubMed  CAS  Google Scholar 

  • Flanagan, J.M., et al., Intra- and interindividual epigenetic variation in human germ cells. Am J Hum Genet, 2006. 79(1): 67–84.

    Article  PubMed  CAS  Google Scholar 

  • Fraga, M.F., et al., Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA, 2005. 102(30): 10604–9.

    Article  PubMed  CAS  Google Scholar 

  • Gardiner-Garden, M. and M. Frommer, CpG islands in vertebrate genomes. J Mol Biol, 1987. 196(2): 261–82.

    Article  PubMed  CAS  Google Scholar 

  • Gebhard, C., et al., Genome-wide profiling of CpG methylation identifies novel targets of aberrant hypermethylation in myeloid leukemia. Cancer Res, 2006. 66(12): 6118–28.

    Article  PubMed  CAS  Google Scholar 

  • Glass, J.L., et al., CG dinucleotide clustering is a species-specific property of the genome. Nucleic Acids Res, 2007. 35(20): 6798–807.

    Article  PubMed  CAS  Google Scholar 

  • Gottlicher, M., et al., Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J, 2001. 20(24): 6969–78.

    Article  PubMed  CAS  Google Scholar 

  • Hatada, I., et al., Genome-wide profiling of promoter methylation in human. Oncogene, 2006. 25(21): 3059–64.

    Article  PubMed  CAS  Google Scholar 

  • Hatchwell, E. and J.M. Greally, The potential role of epigenomic dysregulation in complex human disease. Trends Genet, 2007. 23(11): 588–95.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, H., et al., High-resolution mapping of DNA methylation in human genome using oligonucleotide tiling array. Hum Genet, 2007. 120(5): 701–11.

    Article  PubMed  CAS  Google Scholar 

  • Heintzman, N.D., et al., Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nature Genet, 2007. 39(3): 311–318.

    Article  PubMed  CAS  Google Scholar 

  • Hellebrekers, D.M., A.W. Griffioen, and M. van Engeland, Dual targeting of epigenetic therapy in cancer. Biochim Biophys Acta, 2007. 1775(1): 76–91.

    PubMed  CAS  Google Scholar 

  • Hendrich, B. and S. Tweedie, The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet, 2003 19(5): 269–77.

    Article  PubMed  CAS  Google Scholar 

  • Herman, J.G., et al., Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A, 1996. 93(18): 9821–6.

    Article  PubMed  CAS  Google Scholar 

  • Hoque, M.O., et al., Genome-wide promoter analysis uncovers portions of the cancer methylome. Cancer Res, 2008. 68(8): 2661–70.

    Article  PubMed  CAS  Google Scholar 

  • Issa, J.P., CpG island methylator phenotype in cancer. Nature Rev Cancer, 2004. 4(12): 988–93.

    Article  CAS  Google Scholar 

  • Jia, D., et al., Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature, 2007. 449(7159): 248–51.

    Article  PubMed  CAS  Google Scholar 

  • Jones P.A., et al. Moving AHEAD with an International Human Epigenome Project. Nature 2008. 454(7205): 711–715.

    Article  CAS  Google Scholar 

  • Kangaspeska, S., et al., Transient cyclical methylation of promoter DNA. Nature, 2008. 452(7183): 112–5.

    Article  PubMed  CAS  Google Scholar 

  • Kerkel, K., et al., Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nature Genet, 2008. 40(7): 904–8.

    Article  PubMed  CAS  Google Scholar 

  • Khulan, B., et al., Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res, 2006. 16(8): 1046–55.

    Article  PubMed  CAS  Google Scholar 

  • Kim, T.H., et al., Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell, 2007. 128(6): 1231–45.

    Article  PubMed  CAS  Google Scholar 

  • Korshunova, Y., et al., Massively parallel bisulphite pyrosequencing reveals the molecular complexity of breast cancer-associated cytosine-methylation patterns obtained from tissue and serum DNA. Genome Res, 2008. 18(1): 19–29.

    Article  PubMed  CAS  Google Scholar 

  • Kremenskoy, M., et al., Genome-wide analysis of DNA methylation status of CpG islands in embryoid bodies, teratomas, and fetuses. Biochem Biophys Res Commun, 2003. 311(4): 884–90.

    Article  PubMed  CAS  Google Scholar 

  • Kuang, S.Q., et al., Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. Leukemia, 2008.

    Google Scholar 

  • Laird, P.W., The power and the promise of DNA methylation markers. Nature Rev Cancer, 2003. 3(4): 253–66.

    Article  CAS  Google Scholar 

  • Lippman, Z., et al., Profiling DNA methylation patterns using genomic tiling microarrays. Nature Methods, 2005. 2(3): 219–24.

    Article  PubMed  CAS  Google Scholar 

  • Maekita, T., et al., High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res, 2006. 12(3 Pt 1): 989–95.

    Article  PubMed  CAS  Google Scholar 

  • Matzke, M., et al., RNA-directed DNA methylation and Pol IVb in Arabidopsis. Cold Spring Harb Symp Quant Biol, 2006. 71: 449–59.

    Article  PubMed  CAS  Google Scholar 

  • Meissner, A., et al., Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 2008.7;454(7205):766–70.

    Article  CAS  Google Scholar 

  • Meissner, A., et al., Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res, 2005. 33(18): 5868–77.

    Article  PubMed  CAS  Google Scholar 

  • Metivier, R., et al., Cyclical DNA methylation of a transcriptionally active promoter. Nature, 2008. 452(7183): 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen, T.S., et al., Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 2007. 448(7153): 553–60.

    Article  PubMed  CAS  Google Scholar 

  • Morris, K.V., et al., Small interfering RNA-induced transcriptional gene silencing in human cells. Science, 2004. 305(5688): 1289–92.

    Article  PubMed  CAS  Google Scholar 

  • Okitsu, C.Y. and C.L. Hsieh, DNA methylation dictates histone H3K4 methylation. Mol Cell Biol, 2007. 27(7): 2746–57.

    Article  PubMed  CAS  Google Scholar 

  • Ooi, S.K. and T.H. Bestor, The colorful history of active DNA demethylation. Cell, 2008. 133(7): 1145–8.

    Article  PubMed  CAS  Google Scholar 

  • Ooi, S.K., et al., DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature, 2007. 448(7154): 714–7.

    Article  PubMed  CAS  Google Scholar 

  • Ordway, J.M., et al., Identification of novel high-frequency DNA methylation changes in breast cancer. PLoS ONE, 2007. 2(12): e1314.

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer, G.P., et al., In vivo footprint and methylation analysis by PCR-aided genomic sequencing: comparison of active and inactive X chromosomal DNA at the CpG island and promoter of human PGK-1. Genes Dev, 1990. 4(8): 1277–87.

    Article  PubMed  CAS  Google Scholar 

  • Pikaard, C.S., Cell biology of the Arabidopsis nuclear siRNA pathway for RNA-directed chromatin modification. Cold Spring Harb Symp Quant Biol, 2006. 71: 473–80.

    Article  PubMed  CAS  Google Scholar 

  • Reinders, J., et al., Genome-wide, high-resolution DNA methylation profiling using bisulfite-mediated cytosine conversion. Genome Res, 2008. 18(3): 469–76.

    Article  PubMed  CAS  Google Scholar 

  • Sarter, B., et al., Sex differential in methylation patterns of selected genes in Singapore Chinese. Hum Genet, 2005. 117(4): 402–3.

    Article  PubMed  CAS  Google Scholar 

  • Schilling, E. and M. Rehli, Global, comparative analysis of tissue-specific promoter CpG methylation. Genomics, 2007 90(3): 314–23.

    Article  PubMed  CAS  Google Scholar 

  • Selker, E.U., Genome defense and DNA methylation in Neurospora. Cold Spring Harb Symp Quant Biol, 2004. 69: 119–24.

    Article  PubMed  CAS  Google Scholar 

  • Shen, L., et al., Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genet, 2007. 3(10): 2023–36.

    Article  PubMed  CAS  Google Scholar 

  • Shiota, K., DNA methylation profiles of CpG islands for cellular differentiation and development in mammals. Cytogenet Genome Res, 2004. 105(2–4): 325–34.

    Article  PubMed  CAS  Google Scholar 

  • Smallwood, A., et al., Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev, 2007. 21(10): 1169–78.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J.F., et al., Identification of DNA Methylation in 3’ Genomic Regions that are Associated with Upregulation of Gene Expression in Colorectal Cancer. Epigenetics, 2007. 2(3).

    Google Scholar 

  • Song, F., et al., Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc Natl Acad Sci USA, 2005. 102(9): 3336–41.

    Article  PubMed  CAS  Google Scholar 

  • Spitz, F., F. Gonzalez, and D. Duboule, A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell, 2003. 113(3): 405–17.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan, P.R., Kinetics of incorporation of 5-methylcytosine in HeLa cells. Biochim Biophys Acta, 1962. 55: 553–6.

    Article  PubMed  CAS  Google Scholar 

  • Strahl, B.D. and C.D. Allis, The language of covalent histone modifications. Nature, 2000. 403(6765): 41–5.

    Article  PubMed  CAS  Google Scholar 

  • Suter, C.M., D.I. Martin, and R.L. Ward, Germline epimutation of MLH1 in individuals with multiple cancers. Nature Genet, 2004. 36(5): 497–501.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, M.M. and A. Bird, DNA methylation landscapes: provocative insights from epigenomics. Nature Rev Genet, 2008. 9(6): 465–76.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, M.M., et al., CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res, 2007. 17(5): 625–31.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, K.H., et al., Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res, 2007. 67(18): 8511–8.

    Article  PubMed  CAS  Google Scholar 

  • The ENCODE Project Consortium, Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 2007. 447(7146): 799–816.

    Article  CAS  Google Scholar 

  • Trinh, B.N., T.I. Long, and P.W. Laird, DNA methylation analysis by MethyLight technology. Methods, 2001. 25(4): 456–62.

    Article  PubMed  CAS  Google Scholar 

  • Vire, E., et al., The Polycomb group protein EZH2 directly controls DNA methylation. Nature, 2006. 439(7078): 871–4.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, C.P. and T.H. Bestor, Cytosine methylation and mammalian development. Genes Dev, 1999. 13(1): 26–34.

    Article  PubMed  CAS  Google Scholar 

  • Waterland, R.A. and R.L. Jirtle, Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol, 2003. 23(15): 5293–300.

    Article  PubMed  CAS  Google Scholar 

  • Waterland, R.A., Assessing the effects of high methionine intake on DNA methylation. J Nutr, 2006. 136(6 Suppl): 1706S-1710S.

    PubMed  CAS  Google Scholar 

  • Weber, M., et al., Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet, 2005. 37(8): 853–62.

    Article  PubMed  CAS  Google Scholar 

  • Weber, M., et al., Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genet, 2007. 39(4): 457–66.

    Article  PubMed  CAS  Google Scholar 

  • Zilberman, D. and S. Henikoff, Genome-wide analysis of DNA methylation patterns. Development, 2007 134(22): 3959–65.

    Google Scholar 

  • Zilberman, D., et al., Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genet, 2007. 39(1): 61–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Greally, J. (2009). The Expanding View of Cytosine Methylation. In: Ferguson-Smith, A.C., Greally, J.M., Martienssen, R.A. (eds) Epigenomics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9187-2_5

Download citation

Publish with us

Policies and ethics