Skip to main content

Cancer Epigenomics

  • Chapter
Book cover Epigenomics

Abstract

Epigenetics is the study of informationmaintained duringmitotic division other than the DNA sequence itself and includes DNA methylation, and modifi- cation of chromatin histone tails. Both DNA methylation and chromatin structure are essential to normal growth and development in mammals and regulate diverse functions such as imprinting, genomic stability, and gene transcription. Incorrect establishment, maintenance, or recognition of epigenetic marks can lead to a wide range of human diseases including immunodeficiency, centromeric region instability and facial anomalies syndrome (ICF), Rett syndrome, and cancer. In human cancer, both global hypomethylation of DNA across the genome and locus specific hypermethylation of DNA in promoters are common, thus are hallmarks of malignancy. Changes in transcription of histone tail modifying enzymes have also been well documented in a variety of human tumors. Although a great deal is known about epigenetic changes in cancer at the single gene level, little is known about the cancer epigenome; a genome-wide approach is likely to reveal important new insights that can not been seen from the single gene viewpoint. In this chapter we will describe new technologies used to study the epigenome and review what we have learned about the cancer epigenome using these new approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arisan, S., E. D. Buyuktuncer, et al. (2005). “Increased expression of EZH2, a polycomb group protein, in bladder carcinoma.” Urol Int 75(3): 252–7.

    Article  PubMed  CAS  Google Scholar 

  • Ballestar, E., M. F. Paz, et al. (2003). “Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer.” EMBO J 22(23): 6335–45.

    Article  PubMed  CAS  Google Scholar 

  • Barski, A., S. Cuddapah, et al. (2007). “High-resolution profiling of histone methylations in the human genome.” Cell 129(4): 823–37.

    Article  PubMed  CAS  Google Scholar 

  • Bibikova, M., Z. Lin, et al. (2006). “High-throughput DNA methylation profiling using universal bead arrays.” Genome Res 16(3): 383–93.

    Article  PubMed  CAS  Google Scholar 

  • Callinan, P. A. and A. P. Feinberg (2006). “The emerging science of epigenomics.” Hum Mol Genet 15 Spec No 1: R95–101.

    Article  PubMed  Google Scholar 

  • Cheng, A. S., A. C. Culhane, et al. (2008). “Epithelial progeny of estrogen-exposed breast progenitor cells display a cancer-like methylome.” Cancer Res 68(6): 1786–96.

    Article  PubMed  CAS  Google Scholar 

  • Cho, B., H. Lee, et al. (2003). “Promoter hypomethylation of a novel cancer/testis antigen gene CAGE is correlated with its aberrant expression and is seen in premalignant stage of gastric carcinoma.” Biochem Biophys Res Commun 307(1): 52–63.

    Article  PubMed  CAS  Google Scholar 

  • Cillo, C., A. Faiella, et al. (1999). “Homeobox genes and cancer.” Exp Cell Res 248(1): 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Clark, S. J. and J. Melki (2002). “DNA methylation and gene silencing in cancer: which is the guilty party?” Oncogene 21(35): 5380–7.

    Article  PubMed  CAS  Google Scholar 

  • Costello, J. F., M. C. Fruhwald, et al. (2000). “Aberrant CpG-island methylation has non-random and tumour-type-specific patterns.” Nat Genet 24(2): 132–8.

    Google Scholar 

  • Croonquist, P. A. and B. Van Ness (2005). “The polycomb group protein enhancer of zeste homolog 2 (EZH 2) is an oncogene that influences myeloma cell growth and the mutant ras phenotype.” Oncogene 24(41): 6269–80.

    Article  PubMed  CAS  Google Scholar 

  • Eads, C. A., K. D. Danenberg, et al. (2000). “MethyLight: a high-throughput assay to measure DNA methylation.” Nucleic Acids Res 28(8): E32.

    Article  PubMed  CAS  Google Scholar 

  • Eckhardt, F., J. Lewin, et al. (2006). “DNA methylation profiling of human chromosomes 6, 20 and 22.” Nat Genet 38(12): 1378–85.

    Article  PubMed  CAS  Google Scholar 

  • Ehrbrecht, A., U. Muller, et al. (2006). “Comprehensive genomic analysis of desmoplastic medulloblastomas: identification of novel amplified genes and separate evaluation of the different histological components.” J Pathol 208(4): 554–63.

    Article  PubMed  CAS  Google Scholar 

  • Estecio, M. R., P. S. Yan, et al. (2007). “High-throughput methylation profiling by MCA coupled to CpG island microarray.” Genome Res 17(10): 1529–36.

    Article  PubMed  CAS  Google Scholar 

  • Fahrner, J. A., S. Eguchi, et al. (2002). “Dependence of histone modifications and gene expression on DNA hypermethylation in cancer.” Cancer Res 62(24): 7213–8.

    PubMed  CAS  Google Scholar 

  • Feinberg, A.P. (2001). “Methylation meets genomics.” Nat Genet 27(1): 9–10.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg, A. P. and B. Tycko (2004). “The history of cancer epigenetics.” Nat Rev Cancer 4(2): 143–53.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg, A. P. and B. Vogelstein (1983). “Hypomethylation distinguishes genes of some human cancers from their normal counterparts.” Nature 301(5895): 89–92.

    Article  PubMed  CAS  Google Scholar 

  • Figueroa, M. E., M. Reimers, et al. (2008). “An integrative genomic and epigenomic approach for the study of transcriptional regulation.” PLoS ONE 3(3): e1882.

    Article  PubMed  Google Scholar 

  • Fraga, M. F., E. Ballestar, et al. (2005). “Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer.” Nat Genet 37(4): 391–400.

    Article  PubMed  CAS  Google Scholar 

  • Gama-Sosa, M. A., V. A. Slagel, et al. (1983). “The 5-methylcytosine content of DNA from human tumors.” Nucleic Acids Res 11(19): 6883–94.

    Article  PubMed  CAS  Google Scholar 

  • Guidi, C. J., A. T. Sands, et al. (2001). “Disruption of Ini1 leads to peri-implantation lethality and tumorigenesis in mice.” Mol Cell Biol 21(10): 3598–603.

    Article  PubMed  CAS  Google Scholar 

  • Hake, S. B., A. Xiao, et al. (2004).v“Linking the epigenetic ‘language’ of covalent histone modifications to cancer.” Br J Cancer 90(4): 761–9.

    Article  PubMed  CAS  Google Scholar 

  • Hatada, I., M. Fukasawa, et al. (2006). “Genome-wide profiling of promoter methylation in human.” Oncogene 25(21): 3059–64.

    Article  PubMed  CAS  Google Scholar 

  • Herman, J. G., J. R. Graff, et al. (1996). “Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands.” Proc Natl Acad Sci U S A 93(18): 9821–6.

    Article  PubMed  CAS  Google Scholar 

  • Hoemme, C., A. Peerzada, et al. (2008). “Chromatin modifications induced by PML-RARalpha repress critical targets in leukemogenesis as analyzed by ChIP-Chip.” Blood 111(5): 2887–95.

    Article  PubMed  CAS  Google Scholar 

  • Hu, M., J. Yao, et al. (2005). “Distinct epigenetic changes in the stromal cells of breast cancers.” Nat Genet 37(8): 899–905.

    Article  PubMed  CAS  Google Scholar 

  • Hu, M., J. Yao, et al. (2006). “Methylation-specific digital karyotyping.” Nat Protoc 1(3): 1621–36.

    Article  PubMed  CAS  Google Scholar 

  • Illingworth, R., A. Kerr, et al. (2008). “A novel CpG island set identifies tissue-specific methylation at developmental gene loci.” PLoS Biol 6(1): e22.

    Article  PubMed  Google Scholar 

  • Irizarry, R. A., C. Ladd-Acosta, et al. (2008). “Comprehensive high-throughput arrays for relative methylation (CHARM).” Genome Res 18(5): 780–90.

    Article  PubMed  CAS  Google Scholar 

  • Italiano, A., R. Attias, et al. (2006). “Molecular cytogenetic characterization of a metastatic lung sarcomatoid carcinoma: 9p23 neocentromere and 9p23-p24 amplification including JAK2 and JMJD2C.” Cancer Genet Cytogenet 167(2): 122–30.

    Article  PubMed  CAS  Google Scholar 

  • Kleer, C. G., Q. Cao, et al. (2003). “EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells.” Proc Natl Acad Sci U S A 100(20): 11606–11.

    Article  PubMed  CAS  Google Scholar 

  • Klochendler-Yeivin, A., L. Fiette, et al. (2000). “The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression.” EMBO Rep 1(6): 500–6.

    Google Scholar 

  • Mutskov, V. and G. Felsenfeld (2004). “Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9.” EMBO J 23(1): 138–49.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, N. and K. Takenaga (1998). “Hypomethylation of the metastasis-associated S100A4 gene correlates with gene activation in human colon adenocarcinoma cell lines.” Clin Exp Metastasis 16(5): 471–9.

    Article  PubMed  CAS  Google Scholar 

  • Rauch, T., H. Li, et al. (2006). “MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells.” Cancer Res 66(16): 7939–47.

    Article  PubMed  CAS  Google Scholar 

  • Rauch, T. and G. P. Pfeifer (2005). “Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer.” Lab Invest 85(9): 1172–80.

    Article  PubMed  CAS  Google Scholar 

  • Rauch, T., Z. Wang, et al. (2007). “Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay.” Proc Natl Acad Sci U S A 104(13): 5527–32.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, C. W., S. A. Galusha, et al. (2000). “Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice.” Proc Natl Acad Sci U S A 97(25): 13796–800.

    Article  PubMed  CAS  Google Scholar 

  • Rosty, C., T. Ueki, et al. (2002). “Overexpression of S100A4 in pancreatic ductal adenocarcinomas is associated with poor differentiation and DNA hypomethylation.” Am J Pathol 160(1): 45–50.

    PubMed  CAS  Google Scholar 

  • Scholz, C., I. Nimmrich, et al. (2005). “Distinction of acute lymphoblastic leukemia from acute myeloid leukemia through microarray-based DNA methylation analysis.” Ann Hematol 84(4): 236–44.

    Article  PubMed  CAS  Google Scholar 

  • Shen, L., Y. Kondo, et al. (2007). “Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters.” PLoS Genet 3(10): 2023–36.

    Article  PubMed  CAS  Google Scholar 

  • Stirzaker, C., J. Z. Song, et al. (2004). “Transcriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells.” Cancer Res 64(11): 3871–7.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland, E., L. Coe, et al. (1992). “McrBC: a multisubunit GTP-dependent restriction endonuclease.” J Mol Biol 225(2): 327–48.

    Article  PubMed  CAS  Google Scholar 

  • Tokizane, T., H. Shiina, et al. (2005). “Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer.” Clin Cancer Res 11(16): 5793–801.

    Article  PubMed  CAS  Google Scholar 

  • Tomonaga, T., K. Matsushita, et al. (2003). “Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer.” Cancer Res 63(13): 3511–6.

    PubMed  CAS  Google Scholar 

  • Varambally, S., S. M. Dhanasekaran, et al. (2002). “The polycomb group protein EZH2 is involved in progression of prostate cancer.” Nature 419(6907): 624–9.

    Google Scholar 

  • Versteege, I., N. Sevenet, et al. (1998). “Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer.” Nature 394(6689): 203–6.

    Article  PubMed  CAS  Google Scholar 

  • Visser, H. P., M. J. Gunster, et al. (2001). “The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma.” Br J Haematol 112(4): 950–8.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G. G., C. D. Allis, et al. (2007). “Chromatin remodeling and cancer, Part I: Covalent histone modifications.” Trends Mol Med 13(9): 363–72.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G. G., C. D. Allis, et al. (2007). “Chromatin remodeling and cancer, Part II: ATP-dependent chromatin remodeling.” Trends Mol Med 13(9): 373–80.

    Article  PubMed  Google Scholar 

  • Weber, M., J. J. Davies, et al. (2005). “Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells.” Nat Genet 37(8): 853–62.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H., Y. Chen, et al. (2005). “Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis.” Nature 438(7070): 981–7.

    Article  PubMed  CAS  Google Scholar 

  • Xie, R., D. S. Loose, et al. (2007). “Hypomethylation-induced expression of S100A4 in endometrial carcinoma.” Mod Pathol 20(10): 1045–54.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z. Q., I. Imoto, et al. (2000). “Identification of a novel gene, GASC1, within an amplicon at 9p23–24 frequently detected in esophageal cancer cell lines.” Cancer Res 60(17): 4735–9.

    PubMed  CAS  Google Scholar 

  • Ye, L., X. Li, et al. (2005). “Hypomethylation in the promoter region of POMC gene correlates –with ectopic overexpression in thymic carcinoids.” J Endocrinol 185(2): 337–43.

    Google Scholar 

  • Yu, J., D. R. Rhodes, et al. (2007). “A polycomb repression signature in metastatic prostate cancer predicts cancer outcome.” Cancer Res 67(22): 10657–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ladd-Acosta, C., Feinberg, A.P. (2009). Cancer Epigenomics. In: Ferguson-Smith, A.C., Greally, J.M., Martienssen, R.A. (eds) Epigenomics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9187-2_21

Download citation

Publish with us

Policies and ethics