Skip to main content

Genomic Imprinting – A Model for Roles of Histone Modifications in Epigenetic Control

  • Chapter
Epigenomics

Abstract

Genomic imprinting is a normal process found in plants and mammals. Imprinted genes are characterised by expression that is dependent on the parental-origin of the gene such that one of the two copies is expressed – either the maternally inherited copy or the paternally inherited copy. It is well-established that the regulation of activity and repression at imprinted domains is conferred by acquisition of DNA methylation at CG dinucleotides in eggs and sperm, which differentially marks the maternal and paternal chromosome homologues and influences gene expression after fertilisation. Differential histone modifications have also been identified at imprinted domains. Recently, the genome-wide distribution of several histone modifications has been described in mammalian cells. Here we extract this histone modification data specifically for imprinted domains and assess the extent to which regional modification might provide insight into the epigenetic control of gene activity and repression in mammals, and the functional relationship between histone modifications and DNA methylation at imprinted loci.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azuara, V., et al., Chromatin signatures of pluripotent cell lines. Nat Cell Biol, 2006. 8(5): 532–8.

    Article  PubMed  CAS  Google Scholar 

  • Barski, A., et al., High-resolution profiling of histone methylations in the human genome. Cell, 2007. 129(4): 823–37.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, B.E., et al., A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 2006. 125(2): 315–26.

    Article  PubMed  CAS  Google Scholar 

  • Boyer, L.A., et al., Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature, 2006. 441(7091): 349–53.

    Article  PubMed  CAS  Google Scholar 

  • Carr, M.S., et al., Allele-specific histone modifications regulate expression of the DLK1-GH2 imprinted domain. Genomics, 2007. 89(2): 280–90.

    Article  PubMed  CAS  Google Scholar 

  • Delaval, K., et al., Differential histone modifications mark mouse imprinting control regions during spermatogenesis. EMBO J, 2007. 26(3): 720–9.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, C.A., et al., The Evolution of the DLK1-DIO3 Imprinted Domain in Mammals. PLoS Biol, 2008. 6(6): e135.

    Article  PubMed  Google Scholar 

  • Ferguson-Smith, A.C. and M.A. Surani, Imprinting and the epigenetic asymmetry between parental genomes. Science, 2001. 293(5532): 1086–9.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Smith, A.C., et al., Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature, 1993. 362(6422): 751–5.

    Article  PubMed  CAS  Google Scholar 

  • Fournier, C., et al., Allele-specific histone lysine methylation marks regulatory regions at imprinted mouse genes. Embo J, 2002. 21(23): 6560–70.

    Article  PubMed  CAS  Google Scholar 

  • Fouse, S.D., et al., Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell, 2008. 2(2): 160–9.

    Article  PubMed  CAS  Google Scholar 

  • Fulmer-Smentek, S.B. and U. Francke, Association of acetylated histones with paternally expressed genes in the Prader–Willi deletion region. Hum Mol Genet, 2001. 10(6): 645–52.

    Article  PubMed  CAS  Google Scholar 

  • Grandjean, V., et al., Relationship between DNA methylation, histone H4 acetylation and gene expression in the mouse imprinted Igf2-H19 domain. FEBS Lett, 2001. 488(3): 165–9.

    Article  PubMed  CAS  Google Scholar 

  • Green, K., et al., A developmental window of opportunity for imprinted gene silencing mediated by DNA methylation and the Kcnq1ot1 noncoding RNA. Mamm Genome, 2007. 18(1): 32–42.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, R.I., et al., DNA methylation is linked to deacetylation of histone H3, but not H4, on the imprinted genes Snrpn and U2af1-rs1. Mol Cell Biol, 2001. 21(16): 5426–36.

    Article  PubMed  CAS  Google Scholar 

  • Guenther, M.G., et al., A chromatin landmark and transcription initiation at most promoters in human cells. Cell, 2007. 130(1): 77–88.

    Article  PubMed  CAS  Google Scholar 

  • Han, L., D.H. Lee, and P.E. Szabo, CTCF is the master organizer of domain-wide allele-specific chromatin at the H19/Igf2 imprinted region. Mol Cell Biol, 2008. 28(3): 1124–35.

    Article  PubMed  CAS  Google Scholar 

  • Heintzman, N.D., et al., Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet, 2007. 39(3): 311–8.

    Article  PubMed  CAS  Google Scholar 

  • Higashimoto, K., et al., Loss of CpG methylation is strongly correlated with loss of histone H3 lysine 9 methylation at DMR-LIT1 in patients with Beckwith-Wiedemann syndrome. Am J Hum Genet, 2003. 73(4): 948–56.

    Article  PubMed  CAS  Google Scholar 

  • Hikichi, T., et al., Imprinting regulation of the murine Meg1/Grb10 and human GRB10 genes; roles of brain-specific promoters and mouse-specific CTCF-binding sites. Nucleic Acids Res, 2003. 31(5): 1398–406.

    Article  PubMed  CAS  Google Scholar 

  • Hu, J.F., et al., Allele-specific histone acetylation accompanies genomic imprinting of the insulin-like growth factor II receptor gene. Endocrinology, 2000. 141(12): 4428–35.

    Article  PubMed  CAS  Google Scholar 

  • Kent, W.J., et al., The human genome browser at UCSC. Genome Res, 2002. 12(6): 996–1006.

    PubMed  CAS  Google Scholar 

  • Kouzarides, T., Chromatin modifications and their function. Cell, 2007. 128(4): 693–705.

    Article  PubMed  CAS  Google Scholar 

  • Lau, J.C., M.L. Hanel, and R. Wevrick, Tissue-specific and imprinted epigenetic modifications of the human NDN gene. Nucleic Acids Res, 2004. 32(11): 3376–82.

    Article  PubMed  CAS  Google Scholar 

  • Lee, T.I., et al., Control of developmental regulators by Polycomb in human embryonicstem cells. Cell, 2006. 125(2): 301–13.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, A., et al., Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat Genet, 2004. 36(12): 1291–5.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, A., et al., Epigenetic dynamics of the Kcnq1 imprinted domain in the early embryo. Development, 2006. 133(21): 4203–10.

    Article  PubMed  CAS  Google Scholar 

  • Li, T., et al., Activating and silencing histone modifications form independent allelic switch regions in the imprinted Gnas gene. Hum Mol Genet, 2004. 13(7): 741–50.

    Article  PubMed  CAS  Google Scholar 

  • Lin, S.P., et al., Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat Genet, 2003. 35(1): 97–102.

    Article  PubMed  CAS  Google Scholar 

  • Lin, S.P., et al., Differential regulation of imprinting in the murine embryo and placenta by the Dlk1-Dio3 imprinting control region. Development, 2007. 134(2): 417–26.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., et al., Identification of a methylation imprint mark within the mouse Gnas locus. Mol Cell Biol, 2000. 20(16): 5808–17.

    Article  PubMed  CAS  Google Scholar 

  • Mager, J., et al., Genome imprinting regulated by the mouse Polycomb group protein Eed. Nat Genet, 2003. 33(4): 502–7.

    Article  PubMed  CAS  Google Scholar 

  • Mancini-Dinardo, D., et al., Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev, 2006. 20(10): 1268–82.

    Article  PubMed  CAS  Google Scholar 

  • Mellor, J., Dudek, and D. Clynes, A glimpse into the epigenetic landscape of gene regulation. Curr Opin Genet Dev, 2008. 18(2): 116–22.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen, T.S., et al., Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 2007. 448(7153): 553–60.

    Article  PubMed  CAS  Google Scholar 

  • Morison, I.M., C.J. Paton, and S.D. Cleverley, The imprinted gene and parent-of-origin effect database. Nucleic Acids Res, 2001. 29(1): 275–6.

    Article  PubMed  CAS  Google Scholar 

  • Okamoto, I., et al., Epigenetic dynamics of imprinted X inactivation during early mouse development. Science, 2004. 303(5658): 644–9.

    Article  PubMed  CAS  Google Scholar 

  • Pan, G., et al., Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell, 2007. 1(3): 299–312.

    Article  PubMed  CAS  Google Scholar 

  • Pedone, P.V., et al., Role of histone acetylation and DNA methylation in the maintenance of the imprinted expression of the H19 and Igf2 genes. FEBS Lett, 1999. 458(1): 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Perk, J., et al., The imprinting mechanism of the Prader-Willi/Angelman regional control center. EMBO J, 2002. 21(21): 5807–14.

    Article  PubMed  CAS  Google Scholar 

  • Peters, J. and C.M. Williamson, Control of imprinting at the Gnas cluster. Epigenetics, 2007. 2(4): 207–13.

    PubMed  Google Scholar 

  • Reese, K.J., et al., Maintenance of paternal methylation and repression of the imprinted H19 gene requires MBD3. PLoS Genet, 2007. 3(8): e137.

    Google Scholar 

  • Regha, K., et al., Active and repressive chromatin are interspersed without spreading in an imprinted gene cluster in the mammalian genome. Mol Cell, 2007. 27(3): 353–66.

    Article  PubMed  CAS  Google Scholar 

  • Roh, T.Y., et al., Genome-wide prediction of conserved and nonconserved enhancers by histone acetylation patterns. Genome Res, 2007. 17(1): 74–81.

    Article  PubMed  CAS  Google Scholar 

  • Roh, T.Y., et al., The genomic landscape of histone modifications in human T cells. Proc Natl Acad Sci U S A, 2006. 103(43): 15782–7.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh, S. and T. Wada, Parent-of-origin specific histone acetylation and reactivation of a key imprinted gene locus in Prader-Willi syndrome. Am J Hum Genet, 2000. 66(6): 1958–62.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, A., et al., Tissue-specific imprinting of the G protein Gsalpha is associated with tissue-specific differences in histone methylation. Hum Mol Genet, 2004. 13(8): 819–28.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, H., et al., Temporal and spatial regulation of H19 imprinting in normal and uniparental mouse embryos. Development, 1995. 121(12): 4195–202.

    PubMed  CAS  Google Scholar 

  • Schotta, G., et al., A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev, 2004. 18(11): 1251–62.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, R., et al., WAMIDEX: A web atlas of murine genomic imprinting and differential expression. Epigenetics, 2008. 3(2): 89–96.

    PubMed  Google Scholar 

  • Singh, V. and M. Srivastava, Enhancer blocking activity of insulator at H19-ICR is independent of chromatin barrier establishment. Mol Cell Biol, 2008. 28(11): 3767–75.

    Article  PubMed  CAS  Google Scholar 

  • Sleutels, F., R. Zwart, and D.P. Barlow, The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature, 2002. 415(6873): 810–3.

    PubMed  CAS  Google Scholar 

  • Umlauf, D., et al., Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet, 2004. 36(12): 1296–300.

    Article  PubMed  CAS  Google Scholar 

  • Verona, R.I., et al., The transcriptional status but not the imprinting control region determines allele-specific histone modifications at the imprinted H19 locus. Mol Cell Biol, 2008. 28(1): 71–82.

    Article  PubMed  CAS  Google Scholar 

  • Vu, T.H., T. Li, and A.R. Hoffman, Promoter-restricted histone code, not the differentially methylated DNA regions or antisense transcripts, marks the imprinting status of IGF2R in human and mouse. Hum Mol Genet, 2004. 13(19): 2233–45.

    Article  PubMed  CAS  Google Scholar 

  • Wagschal, A., et al., G9a histone methyltransferase contributes to imprinting in the mouse placenta. Mol Cell Biol, 2008. 28(3): 1104–13.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, C.M., et al., Identification of an imprinting control region affecting the expression of all transcripts in the Gnas cluster. Nat Genet, 2006. 38(3): 350–5.

    Article  PubMed  CAS  Google Scholar 

  • Wu, M.Y., T.F. Tsai, and A.L. Beaudet, Deficiency of Rbbp1/Arid4a and Rbbp1l1/Arid4b alters epigenetic modifications and suppresses an imprinting defect in the PWS/AS domain. Genes Dev, 2006. 20(20): 2859–70.

    Article  PubMed  CAS  Google Scholar 

  • Xin, Z., C.D. Allis, and J. Wagstaff, Parent-specific complementary patterns of histone H3 lysine 9 and H3 lysine 4 methylation at the Prader-Willi syndrome imprinting center. Am J Hum Genet, 2001. 69(6): 1389–94.

    Article  PubMed  CAS  Google Scholar 

  • Xin, Z., et al., Role of histone methyltransferase G9a in CpG methylation of the Prader-Willi syndrome imprinting center. J Biol Chem, 2003. 278(17): 14996–5000.

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki, Y., et al., Neuron-specific relaxation of Igf2r imprinting is associated with neuron-specific histone modifications and lack of its antisense transcript Air. Hum Mol Genet, 2005. 14(17): 2511–20.

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki-Ishizaki, Y., et al., Role of DNA methylation and histone H3 lysine 27 methylation in tissue-specific imprinting of mouse Grb10. Mol Cell Biol, 2007. 27(2): 732–42.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., et al., The histone code regulating expression of the imprinted mouse Igf2r gene. Endocrinology, 2003. 144(12): 5658–70.

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka, H., Y. Shirayoshi, and M. Oshimura, A novel in vitro system for analyzing parental allele-specific histone acetylation in genomic imprinting. J Hum Genet, 2001. 46(11): 626–32.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X.D., et al., Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell, 2007. 1(3): 286–98.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

McEwen, K.R., Ferguson-Smith, A.C. (2009). Genomic Imprinting – A Model for Roles of Histone Modifications in Epigenetic Control. In: Ferguson-Smith, A.C., Greally, J.M., Martienssen, R.A. (eds) Epigenomics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9187-2_14

Download citation

Publish with us

Policies and ethics