Skip to main content
Book cover

Epigenomics pp 163–175Cite as

Describing Epigenomic Information in Arabidopsis

  • Chapter
  • 1041 Accesses

Abstract

Epigenetic modifications of the DNA and histones serve as heritable marks that can influence gene expression states. Genetic and genomic approaches are being used in the model plant Arabidopsis thaliana to understand how plants use epigenetic information. Tiling microarrays and high throughput sequencing have mapped the distribution of DNA methylation, histone methylation and small RNAs at a genome-wide scale. This has refined our models for genome organization and gene regulation in A.thaliana and revealed a number of unexpected patterns, such as DNA methylation within the body of genes. Integrating these large datasets and understanding the relationships between these marks will be an exciting challenge for the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arabidopsis genome initiative (A.G.I.) (2000). “Analysis of the genome sequence of the flowering plant Arabidopsis thaliana.” Nature 408(6814): 796–815.

    Article  Google Scholar 

  • Alonso, J. M., A. N. Stepanova, et al. (2003). “Genome-wide insertional mutagenesis of Arabidopsis thaliana.” Science 301(5633): 653–7.

    Article  PubMed  Google Scholar 

  • Aufsatz, W., M. F. Mette, et al. (2002). “RNA-directed DNA methylation in Arabidopsis.” Proc Natl Acad Sci U S A 99 Suppl 4: 16499–506.

    Article  PubMed  CAS  Google Scholar 

  • Baumberger, N. and D. C. Baulcombe (2005). “Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs.” Proc Natl Acad Sci U S A 102(33): 11928–33.

    Article  PubMed  CAS  Google Scholar 

  • Blevins, T., R. Rajeswaran, et al. (2006). “Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing.” Nucleic Acids Res 34(21): 6233–46.

    Article  PubMed  CAS  Google Scholar 

  • Borevitz, J. O., S. P. Hazen, et al. (2007). “Genome-wide patterns of single-feature polymorphism in Arabidopsis thaliana.” Proc Natl Acad Sci U S A 104(29): 12057–62.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, J. L., S. K. Floyd, et al. (2007). “Green genes-comparative genomics of the green branch of life.” Cell 129(2): 229–34.

    Article  PubMed  CAS  Google Scholar 

  • Cao, X. and S. E. Jacobsen (2002a). “Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes.” Proc Natl Acad Sci U S A 99 Suppl 4: 16491–8.

    Article  CAS  Google Scholar 

  • Cao, X. and S. E. Jacobsen (2002b). “Role of the arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing.” Curr Biol 12(13): 1138–44.

    Article  CAS  Google Scholar 

  • Chan, S. W., I. R. Henderson, et al. (2005). “Gardening the genome: DNA methylation in Arabidopsis thaliana.” Nat Rev Genet 6(5): 351–60.

    Article  PubMed  CAS  Google Scholar 

  • Chan, S. W., D. Zilberman, et al. (2004). “RNA silencing genes control de novo DNA methylation.” Science 303(5662): 1336.

    Article  PubMed  CAS  Google Scholar 

  • Chandler, V. L. and M. Stam (2004). “Chromatin conversations: mechanisms and implications of paramutation.” Nat Rev Genet 5(7): 532–44.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J. Z., J. Wang, et al. (2004). “The development of an Arabidopsis model system for genome-wide analysis of polyploidy effects.” Biol J Linn Soc Lond 82(4): 689–700.

    Article  PubMed  Google Scholar 

  • Cheng, X. (1995). “Structure and function of DNA methyltransferases.” Annu Rev Biophys Biomol Struct 24: 293–318.

    Article  PubMed  CAS  Google Scholar 

  • Choi, Y., M. Gehring, et al. (2002). “DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in arabidopsis.” Cell 110(1): 33–42.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. M., G. Schweikert, et al. (2007). “Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana.” Science 317(5836): 338–42.

    Article  PubMed  CAS  Google Scholar 

  • Clough, S. J. (2005). “Floral dip: agrobacterium-mediated germ line transformation.” Methods Mol Biol 286: 91–102.

    PubMed  CAS  Google Scholar 

  • Cokus, S. J., S. Feng, et al. (2008). “Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning.” Nature 452(7184): 215–9.

    Article  PubMed  CAS  Google Scholar 

  • Comfort, N. C. (2001). “From controlling elements to transposons: Barbara McClintock and the Nobel Prize.” Trends Biochem Sci 26: 454–457.

    Article  PubMed  CAS  Google Scholar 

  • Deleris, A., J. Gallego-Bartolome, et al. (2006). “Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense.” Science 313(5783): 68–71.

    Article  PubMed  CAS  Google Scholar 

  • Ding, S. W. and O. Voinnet (2007). “Antiviral immunity directed by small RNAs.” Cell 130(3): 413–26.

    Article  PubMed  CAS  Google Scholar 

  • Farazi, T. A., S. A. Juranek, et al. (2008). “The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members.” Development 135(7): 1201–14.

    Article  PubMed  CAS  Google Scholar 

  • Fischle, W., B. S. Tseng, et al. (2005). “Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation.” Nature 438(7071): 1116–22.

    Article  PubMed  CAS  Google Scholar 

  • Gasciolli, V., A. C. Mallory, et al. (2005). “Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs.” Curr Biol 15(16): 1494–500.

    Article  PubMed  CAS  Google Scholar 

  • Gaudin, V., M. Libault, et al. (2001). “Mutations in LIKE HETEROCHROMATIN PROTEIN 1 affect flowering time and plant architecture in Arabidopsis.” Development 128: 4847–4858.

    PubMed  CAS  Google Scholar 

  • Gehring, M., J. H. Huh, et al. (2006). “DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation.” Cell 124(3): 495–506.

    Article  PubMed  CAS  Google Scholar 

  • Gong, Z., T. Morales-Ruiz, et al. (2002). “ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase.” Cell 111(6): 803–14.

    Article  PubMed  CAS  Google Scholar 

  • Grewal, S. I. and S. Jia (2007). “Heterochromatin revisited.” Nat Rev Genet 8(1): 35–46.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, A. J. and D. C. Baulcombe (1999). “A species of small antisense RNA in posttranscriptional gene silencing in plants.” Science 286(5441): 950–2.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, I. R. and S. E. Jacobsen (2008). “Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading.” Genes Dev 22(12): 1597–606.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, I. R., X. Zhang, et al. (2006). “Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning.” Nat Genet 38(6): 721–5.

    Article  PubMed  CAS  Google Scholar 

  • Herr, A. J., M. B. Jensen, et al. (2005). “RNA polymerase IV directs silencing of endogenous DNA.” Science 308(5718): 118–20.

    Article  PubMed  CAS  Google Scholar 

  • Jones, L., A. J. Hamilton, et al. (1999). “RNA-DNA interactions and DNA methylation in post-transcriptional gene silencing.” Plant Cell 11(12): 2291–301.

    Article  PubMed  CAS  Google Scholar 

  • Kanno, T., B. Huettel, et al. (2005). “Atypical RNA polymerase subunits required for RNA-directed DNA methylation.” Nat Genet 37(7): 761–5.

    Article  PubMed  CAS  Google Scholar 

  • Kasschau, K. D., N. Fahlgren, et al. (2007). “Genome-wide profiling and analysis of Arabidopsis siRNAs.” PLoS Biol 5(3): e57.

    Article  PubMed  CAS  Google Scholar 

  • Kato, M., A. Miura, et al. (2003). “Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis.” Curr Biol 13(5): 421–6.

    Article  PubMed  CAS  Google Scholar 

  • Kohler, C. and C. B. Villar (2008). “Programming of gene expression by Polycomb group proteins.” Trends Cell Biol 18(5): 236–43.

    Article  PubMed  CAS  Google Scholar 

  • Kurihara, Y. and Y. Watanabe (2004). “Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions.” Proc Natl Acad Sci U S A 101(34): 12753–8.

    Article  PubMed  CAS  Google Scholar 

  • Lam, S. Y., S. R. Horn, et al. (2005). “Crossover interference on nucleolus organizing region-bearing chromosomes in Arabidopsis.” Genetics 170(2): 807–12.

    Article  PubMed  CAS  Google Scholar 

  • Libault, M., F. Tessadori, et al. (2005). “The Arabidopsis LHP1 protein is a component of euchromatin.” Planta 222(5): 910–25.

    Article  PubMed  CAS  Google Scholar 

  • Lippman, Z., A. V. Gendrel, et al. (2004). “Role of transposable elements in heterochromatin and epigenetic control.” Nature 430(6998): 471–6.

    Article  PubMed  CAS  Google Scholar 

  • Lister, R., R. C. O’Malley, et al. (2008). “Highly integrated single-base resolution maps of the epigenome in Arabidopsis.” Cell 133(3): 523–36.

    Article  PubMed  CAS  Google Scholar 

  • Lu, C., K. Kulkarni, et al. (2006). “MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant.” Genome Res 16(10): 1276–88.

    Article  PubMed  CAS  Google Scholar 

  • Lu, C., S. S. Tej, et al. (2005). “Elucidation of the small RNA component of the transcriptome.” Science 309(5740): 1567–9.

    Article  PubMed  CAS  Google Scholar 

  • Madlung, A., A. P. Tyagi, et al. (2005). “Genomic changes in synthetic Arabidopsis polyploids.” Plant J 41(2): 221–30.

    Article  PubMed  CAS  Google Scholar 

  • Matzke, M. A. and J. A. Birchler (2005). “RNAi-mediated pathways in the nucleus.” Nat Rev Genet 6(1): 24–35.

    Article  PubMed  CAS  Google Scholar 

  • Mendenhall, E. M. and B. E. Bernstein (2008). “Chromatin state maps: new technologies, new insights.” Curr Opin Genet Dev 18(2): 109–15.

    Article  PubMed  CAS  Google Scholar 

  • Mi, S., T. Cai, et al. (2008). “Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5’ terminal nucleotide.” Cell 133(1): 116–27.

    PubMed  CAS  Google Scholar 

  • Miura, A., S. Yonebayashi, et al. (2001). “Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis.” Nature 411(6834): 212–4.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery, T. A., M. D. Howell, et al. (2008). “Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation.” Cell 133(1): 128–41.

    Article  PubMed  CAS  Google Scholar 

  • Morales-Ruiz, T., A. P. Ortega-Galisteo, et al. (2006). “DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases.” Proc Natl Acad Sci U S A 103(18): 6853–8.

    Article  PubMed  CAS  Google Scholar 

  • Mosher, R. A., F. Schwach, et al. (2008). “PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis.” Proc Natl Acad Sci U S A 105(8): 3145–50.

    Article  PubMed  CAS  Google Scholar 

  • Mylne, J. S., L. Barrett, et al. (2006). “LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC.” Proc Natl Acad Sci U S A 103(13): 5012–7.

    Article  PubMed  CAS  Google Scholar 

  • Nakahigashi, K., Z. Jasencakova, et al. (2005). “The Arabidopsis heterochromatin protein1 homolog (TERMINAL FLOWER2) silences genes within the euchromatic region but not genes positioned in heterochromatin.” Plant Cell Physiol 46(11): 1747–56.

    Article  PubMed  CAS  Google Scholar 

  • Onodera, Y., J. R. Haag, et al. (2005). “Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation.” Cell 120(5): 613–22.

    Article  PubMed  CAS  Google Scholar 

  • Otto, S. P. (2007). “The evolutionary consequences of polyploidy.” Cell 131(3): 452–62.

    Article  PubMed  CAS  Google Scholar 

  • Pontes, O., N. Neves, et al. (2004). “Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome.” Proc Natl Acad Sci U S A 101(52): 18240–5.

    Article  PubMed  CAS  Google Scholar 

  • Pontier, D., G. Yahubyan, et al. (2005). “Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis.” Genes Dev 19(17): 2030–40.

    Article  PubMed  CAS  Google Scholar 

  • Qi, Y., X. He, et al. (2006). “Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation.” Nature 443(7114): 1008–12.

    Article  PubMed  Google Scholar 

  • Rajagopalan, R., H. Vaucheret, et al. (2006). “A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana.” Genes Dev 20(24): 3407–25.

    Article  PubMed  CAS  Google Scholar 

  • Rangwala, S. H., R. Elumalai, et al. (2006). “Meiotically stable natural epialleles of Sadhu, a novel Arabidopsis retroposon.” PLoS Genet 2(3): e36.

    Article  PubMed  CAS  Google Scholar 

  • Ruvkun, G. (2008). “Tiny RNA: Where do we come from? What are we? Where are we going?” Trends Plant Sci 13(7): 313–6.

    Article  PubMed  CAS  Google Scholar 

  • Saze, H. and T. Kakutani (2007). “Heritable epigenetic mutation of a transposon-flanked Arabidopsis gene due to lack of the chromatin-remodeling factor DDM1.” Embo J 26(15): 3641–52.

    Article  PubMed  CAS  Google Scholar 

  • Saze, H., O. Mittelsten Scheid, et al. (2003). “Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis.” Nat Genet 34(1): 65–9.

    Article  PubMed  CAS  Google Scholar 

  • Saze, H., A. Shiraishi, et al. (2008). “Control of genic DNA methylation by a jmjC domain-containing protein in Arabidopsis thaliana.” Science 319(5862): 462–5.

    Article  PubMed  CAS  Google Scholar 

  • Schranz, M. E., M. A. Lysak, et al. (2006). “The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes.” Trends Plant Sci 11(11): 535–42.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, Y. B. and V. Pirrotta (2008). “Polycomb complexes and epigenetic states.” Curr Opin Cell Biol 20(3): 266–73.

    Article  PubMed  CAS  Google Scholar 

  • Scott, R. J., M. Spielman, et al. (1998). “Parent-of-origin effects on seed development in Arabidopsis thaliana.” Development 125(17): 3329–41.

    PubMed  CAS  Google Scholar 

  • Shindo, C., C. Lister, et al. (2006). “Variation in the epigenetic silencing of FLC contributes to natural variation in Arabidopsis vernalization response.” Genes Dev 20(22): 3079–83.

    Article  PubMed  CAS  Google Scholar 

  • Singer, T., C. Yordan, et al. (2001). “Robertson’s Mutator transposons in A. thaliana are regulated by the chromatin-remodeling gene Decrease in DNA Methylation (DDM1).” Genes Dev 15(5): 591–602.

    Article  PubMed  CAS  Google Scholar 

  • Soppe, W. J., S. E. Jacobsen, et al. (2000). “The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene.” Mol Cell 6(4): 791–802.

    Article  PubMed  CAS  Google Scholar 

  • Somerville, C.R. and Meyerowitz, E.E. eds. (2002). The Arabidopsis Book. Rockville, MD, American Society of Plant Biologists.

    Google Scholar 

  • Sung, S., Y. He, et al. (2006). “Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1.” Nat Genet 38(6): 706–10.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, M. M. and A. Bird (2008). “DNA methylation landscapes: provocative insights from epigenomics.” Nat Rev Genet 9(6): 465–76.

    Article  PubMed  CAS  Google Scholar 

  • Tompa, R., C. M. McCallum, et al. (2002). “Genome-wide profiling of DNA methylation reveals transposon targets of CHROMOMETHYLASE3.” Curr. Biol. 12: 65–68.

    Article  PubMed  CAS  Google Scholar 

  • Tran, R. K., J. G. Henikoff, et al. (2005). “DNA methylation profiling identifies CG methylation clusters in Arabidopsis genes.” Curr Biol 15(2): 154–9.

    Article  PubMed  CAS  Google Scholar 

  • Turck, F., F. Roudier, et al. (2007). “Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27.” PLoS Genet 3(6): e86.

    Article  PubMed  CAS  Google Scholar 

  • van Steensel, B., J. Delrow, et al. (2001). “Chromatin profiling using targeted DNA adenine methyltransferase.” Nat Genet 27(3): 304–8.

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret, H., F. Vazquez, et al. (2004). “The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development.” Genes Dev 18(10): 1187–97.

    Article  PubMed  CAS  Google Scholar 

  • Vaughn, M. W., M. Tanurd Ic, et al. (2007). “Epigenetic Natural Variation in Arabidopsis thaliana.” PLoS Biol 5(7): e174.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., L. Tian, et al. (2006). “Genomewide nonadditive gene regulation in Arabidopsis allotetraploids.” Genetics 172(1): 507–17.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., L. Tian, et al. (2004). “Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids.” Genetics 167(4): 1961–73.

    Article  PubMed  CAS  Google Scholar 

  • Wassenegger, M., S. Heimes, et al. (1994). “RNA-directed de novo methylation of genomic sequences in plants.” Cell 76(3): 567–76.

    Article  PubMed  CAS  Google Scholar 

  • Xie, Z., E. Allen, et al. (2005). “DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana.” Proc Natl Acad Sci U S A 102(36): 12984–9.

    Article  PubMed  CAS  Google Scholar 

  • Xie, Z., L. K. Johansen, et al. (2004). “Genetic and functional diversification of small RNA pathways in plants.” PLoS Biol 2(5): E104.

    Article  PubMed  Google Scholar 

  • Xu, J., H. Hofhuis, et al. (2006). “A molecular framework for plant regeneration.” Science 311(5759): 385–8.

    Article  PubMed  CAS  Google Scholar 

  • Zhai, J., J. Liu, et al. (2008). “Small RNA-directed epigenetic natural variation in Arabidopsis thaliana.” PLoS Genet 4(4): e1000056.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., O. Clarenz, et al. (2007a). “Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis.” PLoS Biol 5(5): e129.

    Article  CAS  Google Scholar 

  • Zhang, X., S. Germann, et al. (2007b). “The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation.” Nat Struct Mol Biol 14(9): 869–71.

    Article  CAS  Google Scholar 

  • Zhang, X., I. R. Henderson, et al. (2007c). “Role of RNA polymerase IV in plant small RNA metabolism.” Proc Natl Acad Sci U S A 104(11): 4536–41.

    Article  CAS  Google Scholar 

  • Zhang, X. and S. E. Jacobsen (2006). “Genetic analyses of DNA methyltransferases in Arabidopsis thaliana.” Cold Spring Harb Symp Quant Biol 71: 439–47.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., S. Shiu, et al. (2008). “Global analysis of genetic, epigenetic and transcriptional polymorphisms in Arabidopsis thaliana using whole genome tiling arrays.” PLoS Genet 4(3): e1000032.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., J. Yazaki, et al. (2006). “Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis.” Cell 126(6): 1189–201.

    Article  PubMed  CAS  Google Scholar 

  • Zilberman, D., X. Cao, et al. (2003). “ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation.” Science 299(5607): 716–9.

    Article  PubMed  CAS  Google Scholar 

  • Zilberman, D., X. Cao, et al. (2004). “Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats.” Curr Biol 14(13): 1214–20.

    Article  PubMed  CAS  Google Scholar 

  • Zilberman, D., M. Gehring, et al. (2007). “Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription.” Nat Genet 39(1): 61–9.

    Article  PubMed  CAS  Google Scholar 

  • Zilberman, D. and S. Henikoff (2007). “Genome-wide analysis of DNA methylation patterns.” Development 134(22): 3959–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Henderson, I.R. (2009). Describing Epigenomic Information in Arabidopsis. In: Ferguson-Smith, A.C., Greally, J.M., Martienssen, R.A. (eds) Epigenomics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9187-2_10

Download citation

Publish with us

Policies and ethics