Skip to main content

Friedel Oscillations In Nanowires At Finite Bias Voltage

  • Conference paper
Electron Transport in Nanosystems

We investigate the charge density oscillations in a nanowire coupled asymmetrically to two leads. Depending on this asymmetry, the Friedel oscillations can either be characterized by a single wave-vector or become a superposition of oscillations with different wave-vectors. Using the formalism of nonequilibrium Keldysh Green functions, we derive a simple equation that determines bias voltage dependence of the wave-length of the oscillations. Finally, we discuss limitations of the commonly used formula that describes the spatial character of the Friedel oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bedürftig, G., Brendel, B., Frahm, H., and Noack, R. M. Friedel Oscillations in the Open Hubbard Chain, Phys. Rev. B 58, 10225–10235 (1998).

    ADS  Google Scholar 

  2. Chen, J., Reed, M. A., Rawlett, A. M., and Tour, J. M. Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device, Science 286, 1550–1552 (1999).

    Article  Google Scholar 

  3. Cohen, A., Richter, K., and Berkovits, R. Spin and Interaction Effects on Charge Distribution and Currents in One-Dimensional Conductors and Rings within the Hartree-Fock Approximation, Phys. Rev. B 57, 6223–6226 (1998).

    Article  ADS  Google Scholar 

  4. Donhauser, Z. J., Mantooth, B. A., Kelly, K. F., Bumm, L. A., Monnell, J. D., Stapleton, J. J., Price Jr., D. W., Rawlett, A. M., Allara D. L., Tour, J. M., and Weiss, P. S. Conductance Switching in Single Molecules through Conformational Changes, Science 292, 2303–2307 (2001).

    Article  Google Scholar 

  5. Eggert S. Scanning Tunneling Microscopy of a Luttinger Liquid, Phys. Rev. Lett. 84, 4413–4416 (2000).

    Article  ADS  Google Scholar 

  6. Emberly, E. G. and Kirczenow, G. Current-Driven Conformational Changes, Charging, and Negative Differential Resistance in Molecular Wires, Phys. Rev. B 64, P125318 (2001).

    ADS  Google Scholar 

  7. Friedel, J. Metallic Alloys, Nuovo Cimento (Suppl.) 7, 287–311 (1958).

    Google Scholar 

  8. Gittins, D. I., Bethell, D., Schiffrin, D. J., and Nichols, R. J. A Nanometre-Scale Electronic Switch Consisting of a Metal Cluster and Redox-Addressable Groups, Nature (London) 408, 67–69 (2000).

    Article  ADS  Google Scholar 

  9. Gorczyca, A., Maśka, M. M., and Mierzejewski, M. (2007) The Friedel Oscillations in the Presence of Transport Currents in a Nanowire, Phys. Rev. B 76, 165419 (2007).

    ADS  Google Scholar 

  10. Grishin, A., Yurkevich, I. V., and Lerner, I. V. Functional Integral Bosonization for an Impurity in a Luttinger Liquid, Phys. Rev. B 69, P165108 (2004).

    ADS  Google Scholar 

  11. Kostyrko, T. and Bulka, B. R. Hubbard Model Approach for the Transport Properties of Short Molecular Chains, Phys. Rev. B 67, P205331 (2003).

    ADS  Google Scholar 

  12. Krive, I. V., Rozhavsky, A. S., Mucciolo, E. R., and Oxman, L. E. Electron Transport Through a Mesoscopic Metal-CDW-Metal Junction, Phys. Rev. B 61, 12835–12841 (2000).

    ADS  Google Scholar 

  13. Kwapiήski, T. Charge Fluctuations in a Perfect and Disturbed Quantum Wire, J. Phys.: Condens. Matter 18, 7313–7326 (2006).

    Article  ADS  Google Scholar 

  14. Lee, J., Eggert, S., Kim, H., Kahng, S. -J., Shinohara, H., and Kuk, Y. Real Space Imaging of One-Dimensional Standing Waves: Direct Evidence for a Luttinger Liquid, Phys. Rev. Lett. 93, P166403 (2004).

    Article  ADS  Google Scholar 

  15. Mantel, O. C, Bal, C. A. W., Langezaal, C, Dekker, C, and van der Zant, H. S. J. Sliding Charge-Density-Wave Transport in Micron-Sized Wires of Rb0.30MoO3, Phys. Rev. B 60, 5287–5294 (1999).

    ADS  Google Scholar 

  16. Mierzejewski, M. and Maśka, M. M. Transport Properties of Nanosystems with Conventional and Unconventional Charge Density Waves, Phys. Rev. B 73, P205103 (2006).

    ADS  Google Scholar 

  17. Oxman, L. E., Mucciolo, E. R., and Krive, I. V. Transport in Finite Incommensurate Peierls-Fröhlich Systems, Phys. Rev. B 61, 4603–4607 (2000).

    ADS  Google Scholar 

  18. Park, H., Park, J., Lim, A. K. L., Anderson, E. H., Alivisatos, A. P., and McEuen, P. L. Nanomechanical Oscillations in a Single-C(sub 60) Transistor, Nature (London) 407, 57–60 (2000).

    Article  ADS  Google Scholar 

  19. Ringland, K. L., Finnefrock, A. C, Li, Y., Brock, J.D., Lemay, S. G., and Thorne, R. E. Sliding Charge-Density Waves as Rough Growth Fronts, Phys. Rev. B 61, 4405–4408 (2000).

    ADS  Google Scholar 

  20. Rommer, S. and Eggert, S. Spin- and Charge-Density Oscillations in Spin Chains and Quantum Wires, Phys. Rev. B 62, 4370–4382 (2000).

    ADS  Google Scholar 

  21. Schmitteckert, P. and Eckern, U. Phase Coherence in a Random One-Dimensional System of Interacting Fermions: A Density-Matrix Renormalization-Group Study, Phys. Rev. B 53, 15397–15400 (1996).

    ADS  Google Scholar 

  22. Weiss, Y., Goldstein, M., and Berkovits, R. Friedel Oscillations in Disordered Quantum Wires: Influence of Electron-Electron Interactions on the Localization Length, Phys. Rev. B 75, P064209 (2007).

    ADS  Google Scholar 

  23. van der Zant, H. S. J., Marković, N., and Slot, E. Submicron Charge—Density— Wave Devices, Usp. Fiz. Nauk (Suppl.) 171, 61–65 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Gorczyca, A., Maska, M., Mierzejewski, M. (2008). Friedel Oscillations In Nanowires At Finite Bias Voltage. In: Bonča, J., Kruchinin, S. (eds) Electron Transport in Nanosystems. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9146-9_4

Download citation

Publish with us

Policies and ethics