Si Circuits, Optical Fibers, And Alingap And Ingan Light-Emitters

  • J. D. Dow
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Fifty years ago, there were three major questions facing the physics of semiconductors: (i) Would Si, having replaced Ge only a few years before, maintain its position as the dominant semiconductor, or would Si be replaced by faster semiconductors, such as III–V semiconductors (e.g., GaAs); (ii) would the direct-gap III–V semiconductors produce efficient light-emitters; and (iii) would optical fibers become sufficiently transparent to make light-wave communications possible?

Si is for circuits. The biggest surprise of the intervening fifty years is that Si became, and still is, the dominant semiconductor for electrical circuits in modern semiconductors. The first transistor was fabricated at Bell Laboratories out of Ge by Bardeen and Brattain, but Shockley showed that Si was better for transistor technology, and Si has remained dominant ever since. Even the future seems likely to be dominated by Si, which is currently being used for three-dimensional circuits. Hopes for faster useful transistors made out of III-V semiconductors, have dimmed in recent years, and so, all but a few of the III–V fabrication lines for electronic devices have been abandoned.

Optical fibers and Urbach's Rule. In the late 1960s there was a question of whether optical fibers were possible, and how long a fiber is compatible with transmission of visible light. At the time, fibers capable of transmitting light about a meter were in existence, and the question was whether this distance could be increased to over one km. The increase has occurred.

III–V light emitters. Si is not a candidate for light emission, since it is an indirect-gap semiconductor. The preferred light-emitting semiconductors are currently Al 1−xy In x GayP or In1−x Ga x N, and cover the visible spectrum from red to violet and white. So now it is possible to compute with Si, to transmit the computed information over optical fibers, and to fabricate light-emitting diodes of most visible colors.


optical fibers light emitters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bardeen and W. H. Brattain, Phys. Rev. 74, 230 (1948).CrossRefADSGoogle Scholar
  2. 2.
    G. L. Pearson, J. Bardeen, Phys. Rev. 75, 865 (1949).CrossRefADSGoogle Scholar
  3. 3.
    J. Bardeen and W. H. Brattain, Phys. Rev. 75, 1208 (1949).CrossRefADSGoogle Scholar
  4. 4.
    W. Schockley and G. L. Pearson, Phys. Rev. 74, 232 (1948).CrossRefADSGoogle Scholar
  5. 5.
    W. Schockley, Bell Sys. Tech. J. 28, 435 (1949).Google Scholar
  6. 6.
    J. D. Dow and D. Redfield, Phys. Rev. B 5, 594 (1972)ADSGoogle Scholar
  7. 7.
    J. D. Dow, in Optical properties of highly transparent solids, ed. by S. S. Mitra and B. Bendow (Plenum Press, New York, 1975) pp. 131–143.Google Scholar
  8. 8.
    J. D. Dow and D. Redfield, Phys. Rev. B 1, 3358 (1970).ADSGoogle Scholar
  9. 9.
    F. C. Weinstein, J. D. Dow, and B. Y. Lao, Phys. Rev. B 4, 3502 (1971).ADSGoogle Scholar
  10. 10.
    N. Holonyak, Jr. and S. F. Bevacqua, Appl. Phys. Lett. 1, 82 (1962).CrossRefADSGoogle Scholar
  11. 11.
    S. Nakamura, Jpn. J. Appl. Phys. 30, L1705–L1707 (1991).CrossRefADSGoogle Scholar
  12. 12.
    S. P. DenBaars, p. 1, in Introduction to nitride semiconductor blue lasers and light emitting diodes, ed. by S. Nakamura and S. F. Chichibu, Taylor & Francis, London and New York, (2000).Google Scholar
  13. 13.
    D. J. Wolford, W. Y. Hsu, J. D. Dow, and B. G. Streetman, J. Luminescence 18/19, 863–867 (1979).CrossRefGoogle Scholar
  14. 14.
    M. Pilkuhn and H. Rupprecht, J. Appl. Phys. 36, 684 (1965).CrossRefADSGoogle Scholar
  15. 15.
    A. H. Herzog, W. O. Groves, and M. G. Craford, J. Appl. Phys. 40, 1830–1838 (1969).CrossRefADSGoogle Scholar
  16. 16.
    T. Mukai, H. Narimatsu, and S. Nakamura, Jpn. J. Appl. Phys. 37, L479–481 (1998).CrossRefADSGoogle Scholar
  17. 17.
    T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys. 38, 3976–81 (1999).CrossRefADSGoogle Scholar
  18. 18.
    D. J. Wolford, B. G. Streetman, W. Y.Hsu, J. D. Dow, R. J. Nelson, and N. Holonyak, Jr., Phys. Rev. Letters 36, 1400–1403 (1976).CrossRefADSGoogle Scholar
  19. 19.
    P. B. Hart, Proc. IEEE 61, 880 (1973).CrossRefGoogle Scholar
  20. 20.
    D. G. Thomas and J. J. Hopfield, Phys. Rev. bf 150, 680 (1966).CrossRefADSGoogle Scholar
  21. 21.
    S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188–4190 (1996).CrossRefADSGoogle Scholar
  22. 22.
    S. D. Lester, M. J. Ludowise, K. P. Killeen, B. H. Perez, J. N. Miller, and S. J. Rosner, J. Crystal Growth 189–190, 786–789 (1998).CrossRefGoogle Scholar
  23. 23.
    T. Mukai, D. Morita, and S. Nakamura, J. Crystal Growth 189–190, 778–781 (1998).CrossRefGoogle Scholar
  24. 24.
    T. Mukai and S. Nakamura, Jpn. J. Appl. Phys. 38, 5735–5739 (1999).CrossRefADSGoogle Scholar
  25. 25.
    P. Vogl, H. P. Hjalmarson, and J. D. Dow, J. Phys. Chem. Solids 44, 365 (1983).CrossRefADSGoogle Scholar
  26. 26.
    R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, Phys. Rev. Lett. 9, 366 (1962).CrossRefADSGoogle Scholar
  27. 27.
    M. I. Nathan, W. P. Dumke, and G. Burns, Appl. Phys. Lett. 1, 62 (1962).CrossRefADSGoogle Scholar
  28. 28.
    M. G. Craford, W. O. Groves, A. H. Herzog, and D. E. Hill, J. Appl. Phys. 42, 2751 (1971).CrossRefADSGoogle Scholar
  29. 29.
    M. G. Craford, R. W. Shaw, A. H. Herzog, and W. O. Groves, J. Appl. Phys. 43, 4075 (1972).CrossRefADSGoogle Scholar
  30. 30.
    M. G. Craford and W. O. Groves, Proc. IEEE 61, 862 (1973).CrossRefGoogle Scholar
  31. 31.
    J. I. Pankove, IEEE Trans. Electron. Devices 22, 721–724 (1975).CrossRefGoogle Scholar
  32. 32.
    S. Nakamura and S. F. Chichibu, Taylor & Francis, 11 New Fetter Lane, London EC4P–4EE (2000).Google Scholar
  33. 33.
    S. Nakamura and G. Fosol, “The blue laser diode,” (Springer-Verlag, Heidelberg, 1997).Google Scholar
  34. 34.
    H. P. Hjalmarson, P. Vogl, D. J. Wolford, and J. D. Dow, Phys. Rev. Lett. 44, 810–813 (1980).CrossRefADSGoogle Scholar
  35. 35.
    O. F. Sankey, H. P. Hjalmarson, J. D. Dow, D. J. Wolford, and B. G. Streetman, Phys. Rev. Lett. 45, 1656 (1980).CrossRefADSGoogle Scholar
  36. 36.
    T. Mukai, S. Nagahama, T. Yanamoto, M. Sano, D. Morita, M. Yamamoto, M. Nonaka, K. Vasutomo, and K. Akaishi, Phys. Stat. Sol. (c) 2, 3884–3886 (2005).CrossRefGoogle Scholar
  37. 37.
    S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys. 32, L8–L11 (1993).CrossRefADSGoogle Scholar
  38. 38.
    S. Nakamura, T. Mukai, and M. Senoh, Jpn. J. Appl. Phys. 30, L1998–L2001 (1991).CrossRefADSGoogle Scholar
  39. 39.
    M. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, J. Display Technol. 3, 160 (2007).CrossRefADSGoogle Scholar
  40. 40.
    Y. Narukawa, J. Narita, T. Sakamoto, T. Yamada, H. Narimatsu, M. Sano, and T. Mukai, Phys. Stat. Sol. (a) 204, 2087–2093 (2007).CrossRefADSGoogle Scholar
  41. 41.
    Y. Narukawa, M. Sano, M. Ichikawa, S. Minato, T. Sakamoto, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys. 46, L963–L965 (2007).CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  1. 1.Department of PhysicsArizona State UniversityTempeUSA

Personalised recommendations