Skip to main content

A Bio-Inspired Electromechanical System: Artificial Hair Cell

  • Conference paper

Inspired by recent biophysical study on the auditory sensory organs, we study electromechanical system which functions similar to the hair cell of the ear. One of the important mechanisms of hair cells, adaptation, is mimicked by an electromechanical feedback loop. The proposed artificial hair cell functions similar to a living sensory organ in the sense that it senses input force signal in spite of the relatively strong noise. Numerical simulation of the proposed system shows otoacoustic sound emission, which was observed in the experiments on the hair cells of the bullfrog. This spontaneous motion is noise-induced periodic motion which is controlled by the time scale of adaptation process and the mechanical damping.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. De Vries, Physica 14, 48 (1948).

    Article  ADS  Google Scholar 

  2. H. De Vries, Acta Otolaryngol, 37, 218 (1949).

    Article  Google Scholar 

  3. V. Braginsky, S.P. Vyarchanin, Phys. Lett. A 293, 228 (2002).

    Article  MATH  ADS  Google Scholar 

  4. M.D. LaHaye, O. Buu, B. Camarota, K.C. Schwab, Science 304, 74 (2004).

    Article  ADS  Google Scholar 

  5. K.-H. Ahn, T. Song, Y.D. Park, S. Park, (submitted).

    Google Scholar 

  6. K.-H. Ahn, T. Song, J. Lee, (preprint).

    Google Scholar 

  7. P. Martin, A.D. Mehta, and A.J. Hudspeth, Proc. Natl. Acad. Sci. 97, 12026 (2000).

    Article  ADS  Google Scholar 

  8. A.C. Crawford and R. Fettiplace, J. Physiol. 364, 359 (1985).

    Google Scholar 

  9. R.A. Eatock, D.P. Corey, and A.J. Hudspeth, J. Neurosci. 7, 2821 (1987).

    Google Scholar 

  10. R.A. Eatock, Annu. Rev. Neurosci. 23, 285 (2000).

    Article  Google Scholar 

  11. P.G. Gillespie and R.G. Walker, Nature 413, 194 (2001).

    Article  ADS  Google Scholar 

  12. P.G. Gillespie and D.P. Corey, Neuron 19, 955 (1997).

    Article  Google Scholar 

  13. R. Probst, Otoacoustic emissions: an overview, in New Aspects of Cochlear Mechanics and Inner Ear Pathophysiology, edited by C.R. Pfaltz, Basel, Karger, p1–p91, (1990).

    Google Scholar 

  14. P. Martin, A.J. Hudspeth, Proc. Natl. Acad. Sci. 96, 14306 (1999).

    Article  ADS  Google Scholar 

  15. R.F. Fox, I.R. Gatland, R. Roy, and G. Vemuri, Phys. Rev. A 38, 5938 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-Hun Ahn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Ahn, KH. (2008). A Bio-Inspired Electromechanical System: Artificial Hair Cell. In: Bonča, J., Kruchinin, S. (eds) Electron Transport in Nanosystems. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9146-9_27

Download citation

Publish with us

Policies and ethics