Skip to main content

Bipolaronic Proximity And Other Unconventional Effects In Cuprate Superconductors

  • Conference paper
  • 982 Accesses

There is compelling evidence for a strong electron-phonon interaction (EPI) in cuprate superconductors from the isotope effects on the supercarrier mass, high resolution angle resolved photoemission spectroscopies (ARPES), a number of optical and neutron-scattering measurements in accordance with our prediction of high-temperature superconductivity in polaronic liquids. A number of observations point to the possibility that high-T c cuprate superconductors may not be conventional Bardeen-Cooper-Schrieffer (BCS) superconductors, but rather derive from the Bose-Einstein condensation (BEC) of real-space pairs, which are mobile small bipolarons. Here I review the bipolaron theory of unconventional proximity effects, the symmetry and checkerboard modulations of the order parameter and quantum magneto-oscillations discovered recently in cuprates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. S. Alexandrov, Phys. Rev. B 38, 925 (1988).

    Article  ADS  Google Scholar 

  2. A. S. Alexandrov and N. F. Mott, Rep. Prog. Phys. 57, 1197 (1994).

    Article  ADS  Google Scholar 

  3. A. S. Alexandrov, Phys. Rev. B 53, 2863 (1996).

    Article  ADS  Google Scholar 

  4. A. S. Alexandrov, Theory of Superconductivity: From Weak to Strong Coupling (IoP Publishing, Bristol/Philadelphia, 2003).

    Google Scholar 

  5. P. P. Edwards, C. N. R. Rao, N. Kumar, and A. S. Alexandrov, Chem. Phys. Chem. 7, 2015 (2006).

    Google Scholar 

  6. A. S. Alexandrov, in Studies in High Temperature Superconductors, ed. A. V. Narlikar (Nova Science Pub., NY, 2006), v. 50, pp. 1–69.

    Google Scholar 

  7. A. S. Alexandrov, J. Phys.: Condens. Matter 19, 125216 (2007).

    Article  ADS  Google Scholar 

  8. A. S. Alexandrov and P. E. Kornilovitch, J. Phys. Cond. Matt. 14, 5337 (2002).

    Article  ADS  Google Scholar 

  9. G. M. Zhao and D. E. Morris, Phys. Rev. B 51, 16487 (1995); G. -M. Zhao, M. B. Hunt, H. Keller, and K. A. Müller, Nature (London) 385, 236 (1997); R. Khasanov, D. G. Eshchenko, H. Luetkens, E. Morenzoni, T. Prokscha, A. Suter, N. Garifianov, M. Mali, J. Roos, K. Conder, and H. Keller, Phys. Rev. Lett. 92, 057602 (2004).

    Article  ADS  Google Scholar 

  10. A. Lanzara, P. V. Bogdanov, X. J. Zhou, S. A. Kellar, D. L. Feng, E. D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J. I. Shimoyana, T. Noda, S. Uchida, Z. Hussain, and Z. X. Shen, Nature (London) 412, 510 (2001); G. -H. Gweon, T. Sasagawa, S. Y. Zhou, J. Craf, H. Takagi, D. -H. Lee, and A. Lanzara, Nature (London) 430, 187 (2004); X. J. Zhou, J. Shi, T. Yoshida, T. Cuk, W. L. Yang, V. Brouet, J. Nakamura, N. Mannella, S. Komiya, Y. Ando, F. Zhou, W. X. Ti, J. W. Xiong, Z. X. Zhao, T. Sasagawa, T. Kakeshita, H. Eisaki, S. Uchida, A. Fujimori, Z. -Y. Zhang, E. W. Plummer, R. B. Laughlin, Z. Hussain, and Z. -X. Shen, Phys. Rev. Lett. 95, 117001 (2005).

    Article  ADS  Google Scholar 

  11. D. Mihailovic, C. M. Foster, K. Voss, and A. J. Heeger, Phys. Rev. B 42, 7989 (1990).

    Article  ADS  Google Scholar 

  12. P. Calvani, M. Capizzi, S. Lupi, P. Maselli, A. Paolone, P. Roy, S. W. Cheong, W. Sadowski, and E. Walker, Solid State Commun. 91, 113 (1994).

    Article  ADS  Google Scholar 

  13. R. Zamboni, G. Ruani, A. J. Pal, and C. Taliani, Solid St. Commun. 70, 813 (1989).

    Article  ADS  Google Scholar 

  14. T. Timusk, C. C. Homes, and W. Reichardt, in Anharmonic properties of High Tc cuprates (eds. D. Mihailovic, G. Ruani, E. Kaldis, and K. A. Müller, Singapore: World Scientific, p. 171 (1995)).

    Google Scholar 

  15. T. R. Sendyka, W. Dmowski, T. Egami, N. Seiji, H. Yamauchi, and S. Tanaka, Phys. Rev. B 51, 6747 (1995); T. Egami, J. Low Temp. Phys. 105, 791 (1996).

    Article  ADS  Google Scholar 

  16. D. Reznik, L. Pintschovius, M. Ito, S. Iikubo, M. Sato, H. Goka, M. Fujita, K. Yamada, G. D. Gu, and J. M. Tranquada, Nature 440, 1170 (2006).

    Article  ADS  Google Scholar 

  17. P. Zhang, S. G. Louie and M. L. Cohen, Phys. Rev. Lett. 98, 067005 (2007).

    Article  ADS  Google Scholar 

  18. A. S. Alexandrov, Physica C (Amsterdam) 363, 231 (2001).

    Article  ADS  Google Scholar 

  19. D. Mihailovic, V. V. Kabanov, K. Zagar, and J. Demsar, Phys. Rev. B 60, 6995 (1999) and references therein.

    Article  ADS  Google Scholar 

  20. A. S. Alexandrov, Physica C (Amsterdam) 182, 327 (1991).

    Article  ADS  Google Scholar 

  21. V. N. Zavaritsky, V. V. Kabanov, and A. S. Alexandrov, Europhys. Lett. 60, 127 (2002).

    Article  ADS  Google Scholar 

  22. A. S. Alexandrov, Phys. Rev. B 48, 10571 (1993).

    Article  ADS  Google Scholar 

  23. A. S. Alexandrov and N. F. Mott, Phys. Rev. Lett. 71, 1075 (1993).

    Article  ADS  Google Scholar 

  24. Y. Zhang, N. P. Ong, Z. A. Xu, K. Krishana, R. Gagnon, and L. Taillefer, Phys. Rev. Lett. 84, 2219 (2000), and unpublished.

    Article  ADS  Google Scholar 

  25. K. K. Lee, A. S. Alexandrov, and W. Y. Liang, Phys. Rev. Lett. 90, 217001 (2003); Eur. Phys. J. B 30, 459 (2004).

    Article  ADS  Google Scholar 

  26. A. S. Alexandrov, Phys. Rev. B 73, 100501 (2006).

    Article  ADS  Google Scholar 

  27. A. S. Alexandrov, Phys. Rev. Lett. 96, 147003 (2006).

    Article  ADS  Google Scholar 

  28. H. Fehske and S. A. Trugman, in Polarons in Advanced Materials, ed. A. S. Alexandrov (Springer/Canopus, Bristol 2007), pp. 393–461; A. S. Mishchenko and N. Nagaosa, ibid, pp. 503–544.

    Chapter  Google Scholar 

  29. A. S. Alexandrov, Phys. Rev. B 75, 132501 (2007).

    Article  ADS  Google Scholar 

  30. I. Bozovic, G. Logvenov, M. A. J. Verhoeven, P. Caputo, E. Goldobin, and M. R. Beasley, Phys. Rev. Lett. 93, 157002 (2004), and references therein.

    Article  ADS  Google Scholar 

  31. P. Abbamonte, L. Venema, A. Rusydi, G. A. Sawatsky, G. Logvenov, and I. Bozovic, Science 297, 581 (2002).

    Article  ADS  Google Scholar 

  32. I. Bozovic, G. Logvenov, M. A. J. Verhoeven, P. Caputo, E. Goldobin, and T. H. Geballe, Nature (London) 422, 873 (2003).

    Article  ADS  Google Scholar 

  33. A. S. Alexandrov, Phys. Rev. B 60, 14573 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  34. V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950).

    Google Scholar 

  35. E. P. Gross, Nuovo Cimento 20, 454 (1961); L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 40, 646 (1961) (Soviet Phys. JETP 13, 451 (1961)).

    Article  MATH  Google Scholar 

  36. M. Yu. Kagan and D. V. Efremov, Phys. Rev. B 65, 195103 (2002).

    Article  ADS  Google Scholar 

  37. V. N. Popov, Theor. Math. Phys. 11, 565 (1972); D. S. Fisher and P. C. Hohenberg, Phys. Rev. B 37, 4936 (1988).

    Article  Google Scholar 

  38. A. P. Mackenzie et al., Phys. Rev. Lett. 71, 1238 (1993).

    Article  ADS  Google Scholar 

  39. M. Plate et al., Phys. Rev. Lett. 95, 077001 (2005).

    Article  ADS  Google Scholar 

  40. N. Doiron-Leyraud et al., Nature 447, 565 (2007).

    Article  ADS  Google Scholar 

  41. A. F. Bangura et al., arXiv:0707.4461.

    Google Scholar 

  42. E. A. Yelland et al., arXiv:0707.0057.

    Google Scholar 

  43. C. Jaudet et al., arXiv:0711.3559.

    Google Scholar 

  44. A. Damascelli, Z. Hussain, and Zhi-Xun Shen, Rev. Mod. Phys. 75 473 (2003).

    Article  ADS  Google Scholar 

  45. D. Schoenberg, Magnetic Oscillations in Metals (Cambridge University Press, Cambridge, 1984).

    Google Scholar 

  46. J. M. Harris, K. Krishana, N. P. Ong, R. Cagnon, and L. Taillefer, J. Low Temp. Phys. 105, 877 (1996).

    Article  ADS  Google Scholar 

  47. J. E. Hoffman et al. Science 295, 466 (2002); C. Howald et al., Phys. Rev. B 67, 014533 (2003); M. Vershinin et al. Science 303, 1995 (2004).

    Article  ADS  Google Scholar 

  48. A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 (1957); Soviet Phys. JETP 5, 1174 (1957).

    Google Scholar 

  49. V. V. Kabanov and A. S. Alexandrov, Phys. Rev. B 71, 132511 (2005).

    Article  ADS  Google Scholar 

  50. Results for the square vortex lattice are also applied to the triangular lattice. Moreover there is a crossover from triangular to square coordination of vortices with increasing magnetic field in the mixed phase of cuprate superconductors (R. Gilardi et al., Phys. Rev. Lett. 88, 217003 (2002); S. P. Brown et al., Phys. Rev. Lett. 92, 067004 (2004)).

    Google Scholar 

  51. A. S. Alexandrov, Physica C 305, 46 (1998); Int. J. Mod. Phys. B 21, 2301 (2007).

    Article  ADS  Google Scholar 

  52. R. A. Ogg Jr., Phys. Rev. 69, 243 (1946).

    Article  ADS  Google Scholar 

  53. M. R. Schafroth, Phys. Rev. 100, 463 (1955); J. M. Blatt and S. T. Butler, Phys. Rev. 100, 476 (1955).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Alexandrov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Alexandrov, A.S. (2008). Bipolaronic Proximity And Other Unconventional Effects In Cuprate Superconductors. In: Bonča, J., Kruchinin, S. (eds) Electron Transport in Nanosystems. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9146-9_12

Download citation

Publish with us

Policies and ethics