Advertisement

Emerging Measurement Techniques For Studies Of Mesoscopic Superconductors

  • A. Rydh
  • S. Tagliati
  • R. A. Nilsson
  • R. Xie
  • J. E. Pearson
  • U. Welp
  • W.-K. Kwok
  • R. Divan
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Experimental research on mesoscopic systems puts high demands on the measurement infrastructure, including measurement system with associated sample preparation, experimental design, measurement electronics, and data collection. Successful experiments require both the ability to manufacture small samples and to successfully and accurately study their novel properties. Here, we discuss some aspects and recent advancements of general measurement techniques that should benefit several characterization methods such as thermodynamic, magnetic, and transport studies of mesoscopic superconductors.

Keywords

superconductivity calorimetry mesoscopic Si3N4 membrane measurement techniques lock-in FPGA DAQ ADC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Schrieffer and M. Tinkham, Superconductivity, Rev. Mod. Phys.71(2), S313–S317 (1999).CrossRefGoogle Scholar
  2. 2.
    H. J. Fink and A. G. Presson, Magnetic irreversible solution of the Ginzburg-Landau equations, Phys. Rev.151(1), 219–228 (1966).CrossRefADSGoogle Scholar
  3. 3.
    K. Tanaka, I. Robel, and B. Janko, Electronic structure of multiquantum giant vortex states in mesoscopic superconducting disks, PNAS 99(8), 5233–5236 (2002).MATHCrossRefADSGoogle Scholar
  4. 4.
    P. S. Deo, V. A. Schweigert, and F. M. Peeters, Magnetization of mesoscopic superconducting disks, Phys. Rev. Lett. 79, 4653–4656 (1997).CrossRefADSGoogle Scholar
  5. 5.
    V. G. Kogan, J. R. Clem, J. M. Deang, and M. D. Gunzburger, Nucleation of superconductivity in finite anisotropic superconductors and the evolution of surface superconductivity toward the bulk mixed state, Phys. Rev.B 65, 094514 (2002).ADSGoogle Scholar
  6. 6.
    V. R., Misko, V. M. Fomin, J. T. Devreese, and V. V. Moshchalkov, Stable vortex-antivortex molecules in mesoscopic superconducting triangles, Phys. Rev. Lett.90, 147003 (2003).CrossRefADSGoogle Scholar
  7. 7.
    V. V. Moshchalkov, L. Gielen, C. Strunk, R. Jonckheere, X. Qiu, C. Van Hae-sendonck, and Y. Bruynseraede, Effect of sample topology on the critical fields of mesoscopic superconductors, Nature373, 319–322 (1995).CrossRefADSGoogle Scholar
  8. 8.
    A. K. Geim, I. V. Grigorieva, S. V. Dubonos, J. G. S. Lok, J. C. Maan, A. E. Filippov, and F. M. Peeters, Phase transitions in individual sub-micrometre superconductors, Nature390, 259–262 (1997).CrossRefADSGoogle Scholar
  9. 9.
    Y. Guo, Y. -F. Zhang, X. -Y. Bao, T. -Z. Han, Z. Tang, L. -X. Zhang, W. -G. Zhu, E. G. Wang, Q. Niu, Z. Q. Qiu, J. -F. Jia, Z. -X. Zhao, and Q. -K. Xue, Superconductivity modulated by quantum size effects, Science306, 1915–1917 (2004).CrossRefADSGoogle Scholar
  10. 10.
    Z. Zhao, C. Y. Han, W. -K. Kwok, H. -H. Wang, U. Welp, J. Wang, and G. W. CrabtreeTuning the architecture of mesostructures by electrodeposition, J. Am. Chem. Soc.126, 2316–2317 (2004).CrossRefGoogle Scholar
  11. 11.
    M. V. Moody, J. L. Paterson, and R. L. Ciali, High-resolution dc-voltage-biased ac conductance bridge for tunnel junction measurements, Rev. Sci. Instrum.50, 903–908 (1979).CrossRefADSGoogle Scholar
  12. 12.
    P. -A. Probst and A. Jaquier, Multiple-channel digital lock-in amplifier with PPM resolution, Rev. Sci. Instrum.65(3), 747–750 (1994).CrossRefADSGoogle Scholar
  13. 13.
    A. Restelli, R. Abbiati, and A. Geraci, Digital field programmable gate array-based lock-in amplifier for high-performance photon counting applications, Rev. Sci. Instrum.76, 093112 (2005).CrossRefADSGoogle Scholar
  14. 14.
    A. Rydh, Calorimetry of Sub-Microgram Grains, in Encyclopedia of Materials: Science and Technology, 2006 Online Update, edited by K. H. J. Buschow, M. C. Flemings, R. W. Cahn, P. Veyssi`ere, E. J. Kramer, and S. Mahajan (Elsevier, Oxford, 2006). Available online athttp://www.sciencedirect.com/science/referenceworks/0080431526.
  15. 15.
    P. F. Sullivan and G. Seidel, Steady-state, ac-temperature calorimetry, Phys. Rev.173, 679–685 (1968).CrossRefADSGoogle Scholar
  16. 16.
    L. Wu, B. Zhou, C. W. Garland, T. Bellini, and D. W. Schaefer, Heat-capacity study of nematic-isotropic and nematic-smectic-A transitions for octylcyanobiphenyl in silica aerogels, Phys. Rev.E 51, 2157–2165 (1995).ADSGoogle Scholar
  17. 17.
    Z. Kutnjak, S. Kralj, G. Lahajnar, and S. Zumer, Calorimetric study of octyl-cyanobiphenyl liquid crystal confined to a controlled-pore glass, Phys. Rev.E 68, 021705 (2003).ADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2008

Authors and Affiliations

  • A. Rydh
    • 1
  • S. Tagliati
    • 1
  • R. A. Nilsson
    • 1
  • R. Xie
    • 2
  • J. E. Pearson
    • 2
  • U. Welp
    • 2
  • W.-K. Kwok
    • 2
  • R. Divan
    • 3
  1. 1.Department of PhysicsStockholm University, AlbaNova University CenterSweden
  2. 2.Materials Science DivisionArgonne National LaboratoryArgonneUSA
  3. 3.Center for Nanoscale Materials, Argonne National LaboratoryArgonneUSA

Personalised recommendations