Skip to main content

Controlling Spiral Turbulence in Simulated Cardiac Tissue by Low-Amplitude Traveling Wave Stimulation

  • Conference paper
Complex Dynamics in Physiological Systems: From Heart to Brain

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Ventricular fibrillation (VF), a class of cardiac arrhythmias that is often fatal, is associated with the breakdown of spatially coherent activity in heart tissue. Modeling studies have linked VF with the onset of spatiotemporal chaos in the electrophysiological activity of the heart, through the creation and subsequent breakup of spiral waves. Conventionally, defibrillation is carried out by applying large electrical shocks to the heart which has harmful effects both in the short and long terms. Using nonlinear dynamics techniques, several low-amplitude control methods for VF have been suggested. However, all of them suffer from the problem of either having to use high power (applied over the entire system) or extremely high frequencies (which are unstable and may spontaneously give rise to further VF episodes). In this paper we propose a spatially extended but non-global scheme for controlling VF in simulated cardiac tissue. The method involves successive activation of electrodes arranged in a square array, such that, a wave of control stimulation is seen to propagate through the system. Our simulations involving both simple and realistic models of ventricular tissue show that spatiotemporal chaotic activity associated with VF can be terminated using low amplitude control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. N. Anderson, K. D. Kochanek, S. L. Murphy, Report of Final Mortality Statistics 1995, NCHS Monthly Vital Statistics Report 45, Supplement 2, 7 (1997)

    Google Scholar 

  2. J. Keener, J. Sneyd, Mathematical Physiology, Springer, Berlin (1998)

    Google Scholar 

  3. A. V. Panfilov, P. Hogeweg, Spiral breakup in modified FitzHugh-Nagumo model, Phys. Lett. A 176, 295–299 (1993)

    Article  Google Scholar 

  4. A. V. Panfilov, Spiral breakup as a model of ventricular fibrillation, Chaos 8(1), 57–64 (1998)

    Article  PubMed  Google Scholar 

  5. A. Hodgkin, A. Huxley, A quantitative description of ion currents and its application to conduction and excitation in nerve membranes, J. Physiol. (London) 117, 500–544 (1952)

    CAS  Google Scholar 

  6. C. H. Luo, Y. Rudy, A model of the ventricular cardiac action potential, Circ. Res. 68(6), 1501–1526 (1991)

    PubMed  CAS  Google Scholar 

  7. R. Pandit, A. Pande, S. Sinha, A. Sen, Spiral turbulence and spatiotemporal chaos: Characterization and control in two excitable media, Physica A 306, 211–219 (2002)

    Article  Google Scholar 

  8. F. X. Witkowski, L. J. Leon, P. A. Penkoske, W. R. Giles, M. L. Spano, W. L. Ditto, A. T. Winfree, Spatiotemporal evolution of ventricular fibrillation, Nature (London) 392, 78–82 (1998)

    Article  CAS  Google Scholar 

  9. R. A. Gray, A. M. Pertsov, J. Jalife, Spatial and temporal organization during cardiac fibrillation, Nature (London) 392, 75–78 (1998)

    Article  CAS  Google Scholar 

  10. P. Wang, P. Xie, H. Yin, Control of spiral waves and turbulent states in a cardiac model by travelling wave perturbations, Chin. Phys 12, 674–682 (2003)

    Article  Google Scholar 

  11. G. V. Osipov, J. J. Collins, Using weak impulses to suppress traveling waves in excitable media, Phys. Rev. E 60, 54–57 (1999)

    Article  CAS  Google Scholar 

  12. R. A. Gray, Termination of spiral wave breakup in a Fitzhugh-Nagumo model via short and long duration stimuli, Chaos 12, 941–951 (2002)

    Article  PubMed  Google Scholar 

  13. S. Alonso, F. Sagues, A. S. Mikhailov, Taming Winfree turbulence of scroll waves in excitable media, Science, 299, 1722–1725 (2003)

    Article  PubMed  CAS  Google Scholar 

  14. S. Alonso, F. Sagues, A. S. Mikhailov, Periodic forcing of scroll rings and control of Winfree turbulence in excitable media, Chaos, 16, 023124 (2006)

    Article  PubMed  CAS  Google Scholar 

  15. S. Alonso, J. M. Sancho, F. Sagues, Suppression of scroll wave turbulence by noise, Phys. Rev. E 70, 067201 (2004)

    Article  CAS  Google Scholar 

  16. A. T. Stamp, G. V. Osipov, J. J. Collins, Suppressing arrhythmias in cardiac models using overdrive pacing and calcium channel blockers, Chaos 12, 931–940 (2002)

    Article  PubMed  CAS  Google Scholar 

  17. H. Zhang, B. Hu, G. Hu, Suppression of spiral waves and spatiotemporal chaos by generating target waves in excitable media, Phys. Rev. E 68, 026134 (2003)

    Article  Google Scholar 

  18. J. Breuer, S. Sinha, Controlling spatiotemporal chaos in excitable media by local biphasic stimulation, preprint nlin.CD/0406047 (2004)

    Google Scholar 

  19. H. Zhang, Z. Cao, N. Wu, H. Ying, G. Hu, Suppressing Winfree turbulence by local forcing excitable systems, Phys. Rev. Lett. 94, 188301 (2005)

    Article  PubMed  Google Scholar 

  20. A. V. Panfilov, J. P. Keener, Effects of high frequency stimulation on cardiac tissue with an inexcitable obstacle, J. Theor. Biol. 163, 439–448 (1993)

    Article  PubMed  CAS  Google Scholar 

  21. S. Sinha, A. Pande, R. Pandit, Defibrillation via the elimination of spiral turbulence in a model for ventricular fibrillation, Phys. Rev. Lett. 86, 3678–3681 (2001)

    Article  PubMed  CAS  Google Scholar 

  22. D. J. Gauthier, G. M. Hall, R. A. Oliver, E. G. Dixon-Tulloch, P. D. Wolf, S. Bahar, Progress toward controlling in vivo fibrillating sheep atria using a nonlinear-dynamics-based closed-loop feedback method, Chaos 12, 952–961 (2002)

    Article  PubMed  Google Scholar 

  23. A. R. J. Mitchell, P. A. R. Spurrell, L. Cheatle, N. Sulke, Effect of atrial anti-tachycardia pacing treatments in patients with an atrial defibrillator: Randomised study comparing subthreshold and nominal pacing outputs, Heart 87, 433–437 (2002)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Sinha, S., Sridhar, S. (2009). Controlling Spiral Turbulence in Simulated Cardiac Tissue by Low-Amplitude Traveling Wave Stimulation. In: Dana, S.K., Roy, P.K., Kurths, J. (eds) Complex Dynamics in Physiological Systems: From Heart to Brain. Understanding Complex Systems. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9143-8_5

Download citation

Publish with us

Policies and ethics