Application of Empirical Mode Decomposition to Cardiorespiratory Synchronization

  • Ming-Chya Wu
  • Chin-Kun Hu
Part of the Understanding Complex Systems book series (UCS)

Abstract

A scheme based on the empirical mode decomposition (EMD) and synchrogram introduced by Wu and Hu [Phys. Rev. E 74, 051917 (2006)] to study cardiorespiratory synchronization is reviewed. In the scheme, an experimental respiratory signal is decomposed into a set of intrinsic mode functions (IMFs), and one of these IMFs is selected as a respiratory rhythm to construct the cardiorespiratory synchrogram incorporating with heartbeat data. The analysis of 20 data sets from ten young (21–34 years old) and ten elderly (68–81 years old) rigorously screened healthy subjects shows that regularity of respiratory signals plays a dominant role in cardiorespiratory synchronization.

Keywords

Empirical mode decomposition Intrinsic mode functions Cardiorespiratory synchrogram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.C. Guyton, Textbook of medical physiology, 8th ed. (Saunders, Philadelphia 1991).Google Scholar
  2. 2.
    L. Bernardi, F. Salvucci, R. Suardi, P.L. Solda, A. Calciati, S. Perlini, C. Falcone, and L. Ricciardi, Evidence for an intrinsic mechanism regulating heart-rate-variability in the transplanted and the intact heart during submaximal dynamic exercise, Cardiovasc. Res. 24,969–981 (1990).PubMedCrossRefGoogle Scholar
  3. 3.
    J. Almasi and O.H. Schmitt, Basic technology of voluntary cardiorespiratory synchronization in electrocardiology, IEEE Trans. Biomed. Eng. 21, 264–273 (1974).Google Scholar
  4. 4.
    P. Tass, M.G. Rosenblum, J. Weule, J. Kurths, A. Pikovsky, J. Volkmann, A. Schnitzler, and H.-J. Freund, Detection of n:m Phase Locking from Noisy Data: Application to Magnetoencephalography, Phys. Rev. Lett. 31, 3291 (1998).CrossRefGoogle Scholar
  5. 5.
    C. Schäfer, M.G. Rosenblum, J. Kurths, and H.-H. Abel, Heartbeat synchronized with ventilation, Nature (London) 392, 239–240 (1998).CrossRefGoogle Scholar
  6. 6.
    C. Schäfer, M.G. Rosenblum, H.-H. Abel, and J. Kurths, Synchronization in the human cardiorespiratory system, Phys. Rev. E 60, 857 (1999).CrossRefGoogle Scholar
  7. 7.
    M.G. Rosenblum, J. Kurths, A. Pikovsky, C. Schäfer, P. Tass, H.-H. Abel, Synchronization in noisy systems and cardiorespiratory interaction, IEEE Eng. Med. Biol. Mag. 17,46–53 (1998).PubMedCrossRefGoogle Scholar
  8. 8.
    E. Toledo, S. Akselrod, I. Pinhas, and D. Aravot, Does synchronization reflect a true interaction in the cardiorespiratory system? Med. Eng. Phys. 24, 45–52 (2002).PubMedCrossRefGoogle Scholar
  9. 9.
    E. Toledo, M.G. Roseblum, C. Schäfer, J. Kurhts, and S. Akselrod, Quantification of cardiorespiratory synchronization in normal and heart transplant subjects. In: Proc. of Int. Symposium on Nonlinear Theory and its Applications, vol. 1, Lausanne, Presses polytechniques et universitaries romandes, pp. 171–174 (1998).Google Scholar
  10. 10.
    E. Toledo, M.G. Rosenblum, J. Kurths, and S. Akselrod, Cardiorespiratory synchronization: is it a real phenomenon ? In: Computers in Cardiology, vol. 26, Los Alamitos (CA), IEEE Computer Society, pp. 237–240 (1999).Google Scholar
  11. 11.
    M.B. Lotric and A. Stefanovska, Synchronization and modulation in the human cardiorespiratory system, Physica A 283, 451–461 (2000).CrossRefGoogle Scholar
  12. 12.
    R. Mrowka and A. Patzak, Quantitative analysis of cardiorespiratory synchronization in infants, Int. J. Bifurcation and Chaos 10, 2479–2488 (2000).Google Scholar
  13. 13.
    A. Stefanovska, H. Haken, P.V.E. McClintock, M. Hozic, F. Bajrovic, and S. Ribaric, Reversible transitions between synchronization states of the cardiorespiratory system, Phys. Rev. Lett. 85, 4831 (2000).PubMedCrossRefGoogle Scholar
  14. 14.
    K. Kotani, K. Takamasu, Y. Ashkenazy, H.E. Stanley, and Y. Yamamoto, Model for cardiorespiratory synchronization in humans, Phys. Rev. E 65, 051923 (2002).CrossRefGoogle Scholar
  15. 15.
    M.G. Rosenblum, A.S. Pikovsky, and J. Kurths, Phase synchronization of chaotic oscillators, Phys. Rev. Lett. 76, 1804 (1996).PubMedCrossRefGoogle Scholar
  16. 16.
    R. Q. Quiroga, J. Arnhold, and P. Grassberger, Learning driver-response relationships from synchronization patterns, Phys. Rev. E 61, 5142 (2000).CrossRefGoogle Scholar
  17. 17.
    R.Q. Quiroga, A. Kraskov, T. Kreuz, and P.P. Grassberger, Performance of different synchronization measures in real data: A case study on electroencephalographic signals, Phys. Rev. E 65, 041903 (2002).CrossRefGoogle Scholar
  18. 18.
    M.G. Rosenblum, A.S. Pikovsky, and J. Kurths, Synchronization approach to analysis of biological systems, Fluctuation and Noise Lett. 4, L53–L62 (2004).CrossRefGoogle Scholar
  19. 19.
    M.G. Rosenblum and A.S. Pikovsky, Controlling synchronization in an ensemble of globally coupled oscillators, Phys. Rev. Lett. 92, 114102 (2004).PubMedCrossRefGoogle Scholar
  20. 20.
    T. Schreiber, Measuring information transfer, Phys. Rev. Lett. 85, 461 (2000).PubMedCrossRefGoogle Scholar
  21. 21.
    M. Paluš and A. Stefanovska, Direction of coupling from phases of interacting oscillators: An information-theoretic approach, Phys. Rev. E 67, 055201(R) (2003).CrossRefGoogle Scholar
  22. 22.
    J. Jamsek and A. Stefanovska, P.V.E. McClintock, Nonlinear cardio-respiratory interactions revealed by time-phase bispectral analysis, Phys. Med. Bio. 49, 4407–4425 (2004).CrossRefGoogle Scholar
  23. 23.
    M. Richter, T. Schreiber, and D.T. Kaplan, Fetal ECG extraction with nonlinear state-space projections, IEEE Eng. Med. Biol. Mag. 45, 133–137 (1998).Google Scholar
  24. 24.
    R. Hegger, H. Kantz, and T. Schreiber, Practical implementation of nonlinear time series methods: The TISEAN package, Chaos 9, 413–435 (1999).CrossRefGoogle Scholar
  25. 25.
    H. Kantz and T. Schreiber, Human EGG: Nonlinear deterministic versus stochastic aspects, IEE Proceedings – Science Measurement and Technology 145, 279–284 (1998).CrossRefGoogle Scholar
  26. 26.
    M.-C. Wu and C.-K. Hu, Empirical mode decomposition and synchrogram approach to cardiorespiratory synchronization, Phys. Rev. E 73, 051917 (2006).CrossRefGoogle Scholar
  27. 27.
    D. Gabor, Theory of communication, J. Inst. Electron Eng. 93, 429–457 (1946).Google Scholar
  28. 28.
    S. Blanco, R. Q. Quiroga, O.A. Rosso, and S.Kochen, Time-frequency analysis of electroencephalogram series, Phys. Rev. E 51, 2624 (1995).CrossRefGoogle Scholar
  29. 29.
    S. Blanco, C.E. D’Attellis, S.I. Isaacson, O.A.Rosso, and R.O. Sirne, Time-frequency analysis of electroencephalogram series. II. Gabor and wavelet transforms, Phys. Rev. E 54, 6661 (1996).CrossRefGoogle Scholar
  30. 30.
    S. Blanco, A. Figliola, R.Q. Quiroga, O.A. Rosso, and E. Serrano, Time-frequency analysis of electroencephalogram series. III. Wavelet packets, Phys. Rev. E 57, 932 (1998).CrossRefGoogle Scholar
  31. 31.
    K. Ohashi, L.A.H. Amaral, B.H. Natelson, and Y. Yamamoto, Asymmetrical singularities in real-world signals, Phys. Rev. E 68, 065204(R) (2003).CrossRefGoogle Scholar
  32. 32.
    K. Karhunen, Uber lineare methoden in der wahrscheinlichkeits-rechnung, Ann. Acad. Sci. Fennicae, ser. A1, Math. Phys. 37 (1946).Google Scholar
  33. 33.
    M.M. Loéve, Probability theory, Princeton, NJ, Van Nostrand (1955).Google Scholar
  34. 34.
    N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.-C. Tung, and H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. A 454, 903–995 (1998).Google Scholar
  35. 35.
    N. Iyengar, C.-K. Peng, R. Morin, A. L. Goldberger, and L. A. Lipsitz, Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics, Am. J. Physiol. 271, 1078–1084 (1996). Data sets are available from http://physionet.org/physiobank/database/fantasia/ Google Scholar
  36. 36.
    N.E. Huang, M.C. Wu, S.R. Long, S.S. P. Shen, W. Qu, P. Gloersen, and K.L. Fan, A confidence limit for the empirical mode decomposition and Hilbert spectral analysis, Proc. R. Soc. Lond. A 459, 2317–2345 (2003).Google Scholar
  37. 37.
    M. G. Roseblum and A. S. Pikovsky, Detecting direction of coupling in interacting oscillators, Phys. Rev. E 64, 045202(R) (2001).CrossRefGoogle Scholar
  38. 38.
    M.-C. Wu, M.-C. Huang, Y.-C. Yu, and T. C. Chiang, Phase distribution and phase correlation of financial time series, Phys. Rev. E 73, 016118 (2006).CrossRefGoogle Scholar
  39. 39.
    M.-C. Wu, Phase correlation of foreign exchange time series, Physica A 375, 633–642 (2007).CrossRefGoogle Scholar
  40. 40.
    M.-C. Wu, Phase statistics approach to time series analysis, J. Korean Phys. Soc. 50,304–312 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ming-Chya Wu
    • 1
  • Chin-Kun Hu
  1. 1.Research Center for Adaptive Data AnalysisNational Central UniversityTaiwan

Personalised recommendations