Skip to main content

A Unified Approach to Attractor Reconstruction

  • Conference paper

Part of the book series: Understanding Complex Systems ((UCS))

abstract

In the analysis of complex, nonlinear time series, scientists in a variety of disciplines have relied on a time delayed embedding of their data, i.e. attractor reconstruction. This approach has left several long-standing, but common problems unresolved in which the standard approaches produce inferior results or give no guidance at all. We propose an alternative approach that views the problem of choosing all embedding parameters as being one and the same problem addressable using a single statistical test formulated directly from the reconstruction theorems. This unified approach resolves all the main issues in attractor reconstruction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.D.I. Abarbanel, Analysis of Observed Chaotic Data. (Springer, New York, 1996).

    Google Scholar 

  2. H. Kantz and T. Schreiber, Nonlinear Time Series Analysis. (Cambridge University Press, Cambridge, UK, 1997).

    Google Scholar 

  3. N. H. Packard, J.P. Crutchfield, J.D. Farmer et al., Geometry from a time series, Physical Review Letters, 45, 712 (1980).

    Article  Google Scholar 

  4. F. Takens, Detecting Strange Attractors in Turbulence in Dynamical Systems and Turbulence, Warwick 1980, edited by D. Rand and L.-S. Young (Springer, Berlin, 1981), p. 366.

    Google Scholar 

  5. T. Sauer, J.A. Yorke, and M. Casdagli, Embedology, Journal Statistical Physics, 64, 579 (1991).

    Article  Google Scholar 

  6. A.M. Fraser and H.L. Swinney, Independent coordinates for strange attractors from mutual information, Physical Review, A 33, 1134 (1986).

    Google Scholar 

  7. G. Kember and A.C. Fowler, A correlation function for choosing time delays in phase portrait reconstructions, Physica, D 58, 127 (1993).

    Google Scholar 

  8. M.T. Rosenstein, J.J. Collins, and C.J. De Luca, Reconstruction expansion as a geometry-based framework for choosing proper delay times, Physica, D 73, 82 (1994).

    Google Scholar 

  9. L. Cao, A. Mees, and J.K. Judd, Dynamics from a multivariate time series, Physicsa, D 121, 75 (1998).

    Google Scholar 

  10. K. Judd and A. Mees, Embedding as a modeling problem, Physica, D 120, 273 (1998).

    Google Scholar 

  11. D. Kugiumtzis, State space reconstruction parameters in the analysis of chaotic time series – the role of the time window length, Physica, D 95(1), 13 (1996).

    Google Scholar 

  12. W. Leibert, K. Pawlezik, and H.G. Schuster, Optimal embeddings of chaotic attractors from topological considerations, Europhysics Letters, 14(6), 521 (1991).

    Article  Google Scholar 

  13. S.P. Garcia and J.S. Almeida, Nearest neighbor embedding with different time delays, Physical Review, E 71, 037204 (2005).

    Google Scholar 

  14. P. Grassberger, T. Schreiber, and C. Schaffrath, Nonlinear time sequence analysis, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1(3), 521 (1991).

    Article  Google Scholar 

  15. M. Kennel and H.D.I. Abarbanel, False neighbors and false strands: A eliable minimum embedding dimension algorithm, Physical Review, E66, 026209 (2002).

    Google Scholar 

  16. M.B. Kennel, R. Brown, and H.D.I. Abarbanel, Determining embedding dimension for phase space reconstruction using the method of false nearest neighbors, Physical Review, A 45, 3403 (1992).

    Google Scholar 

  17. L. Cao, Practical method for determining the minimum embedding dimension of a scalar time series, Physica, D 110, 43 (1997).

    Google Scholar 

  18. A. Fraser, Information and entropy in strange attractors, IEEE Transactions on Information Theory, 35(2), 245 (1989).

    Article  Google Scholar 

  19. S. Boccaletti, L.M. Pecora, and A. Pelaez, Unifying framework for synchronization of coupled dynamical systems, Physical Review, E 63(6), 066219/1 (2001).

    Google Scholar 

  20. D. Broomhead and G.P. King, Extracting qualitative dynamics from experimental data, Physica, 20 D, 217 (1986).

    Google Scholar 

  21. A.P.M. Tsui, A.J. Jones, and A.G. de Oliveira, The construction of smooth models using irregular embeddings determined by a gamma test analysis, Neural Computing & Applications, 10(4), 318 (2002).

    Article  Google Scholar 

  22. D. Evans and A.J. Jones, A proof of the gamma test, Proceedings of the Royal Society of London, Series A (Mathematical, Physical and Engineering Sciences), 458(2027), 2759 (2002).

    Article  Google Scholar 

  23. H. Kantz and E. Olbrich, Scalar observations from a class of high-dimensional chaotic systems: Limitations of the time delay embedding, Chaos, 7(3), 423 (1997).

    Article  PubMed  Google Scholar 

  24. E. Olbrich and H. Kantz, Inferring chaotic dynamics from time-series: On which length scale determinism becomes visible, Physics Letters, A 232, 63 (1997).

    Google Scholar 

  25. L.M. Pecora, L. Moniz, J. Nichols et al., A unified approach to attractor reconstruction, Chaos, 17, 013110 (2007).

    Article  PubMed  Google Scholar 

  26. Wendell Fleming, Functions of Several Variables. (Springer-Verlag, New York, 1977).

    Google Scholar 

  27. L. Pecora, T. Carroll, and J. Heagy, Statistics for mathematical properties of maps between time-series embeddings, Physical Review E, 52(4), 3420 (1995).

    Article  CAS  Google Scholar 

  28. Louis M. Pecora, Thomas L. Carroll, and James F. Heagy, Statistics for Continuity and Differentiability: An Application to Attractor Reconstruction from Time Series in Nonlinear Dynamics and Time Series: Building a Bridge Between the Natural and Statistical Sciences, Fields Institute Communications, edited by C.D. Cutler and D.T. Kaplan (American Mathematical Society, Providence, Rhode Island, 1996), Vol. 11, p. 49.

    Google Scholar 

  29. L. Moniz, L. Pecora, J. Nichols et al., Dynamical assessment of structural damage using the continuity statistic, Structural Health Monitoring, 3(3), 199 (2003).

    Article  Google Scholar 

  30. D. Middleton, An Introduction to Statistical Communication Theory. (IEEE Press, {Piscataway}, NJ, 1996).

    Google Scholar 

  31. E.T. Jaynes, Probability Theory, The Logic of Science. (Cambridge University Press, {Cambridge}, UK, 2003).

    Google Scholar 

  32. J. Theiler, Spurious dimension from correlation algorithms applied to limited time series data, Physical Review, A 34, 2427 (1986).

    Google Scholar 

  33. E.N. Lorenz, Deterministic non-periodic flow, Journal of Atmospheric Science, 20, 130 (1963).

    Article  Google Scholar 

  34. G. Strang, Introduction to Applied Mathematics. (Wellesley-Cambridge Press, Wellesley, MA, 1986).

    Google Scholar 

  35. W.H. Press, B.P. Flannery, S.A. Teukolsky et al., Numerical Recipes. (Cambridge University Press, New York, 1990).

    Google Scholar 

  36. R.C. Elson, A.I. Selverston, R. Huerta et al., Synchronous behavior of two coupled biological neurons, Physical Review Letters, 81(25), 5692 (1998).

    Article  CAS  Google Scholar 

  37. J.L. Hindmarsh and R.M. Rose, A model of neuronal bursting using three coupled first order differential equations, Proceedings of the Royal Society of London, B221, 87 (1984).

    Article  Google Scholar 

  38. M. Falcke, R. Huerta, M.I. Rabinovich et al., Modeling observed chaotic oscillations in bursting neurons: The role of calcium dynamics and IP3, Biological Cybernetics, 82, 517 (2000).

    Article  PubMed  CAS  Google Scholar 

  39. L. Aguirre and C. Letellier, Observability of multivariate differential embeddings, Journal of Physics, A 38, 6311 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Pecora, L.M., Moniz, L., Nichols, J., Carroll, T.L. (2009). A Unified Approach to Attractor Reconstruction. In: Dana, S.K., Roy, P.K., Kurths, J. (eds) Complex Dynamics in Physiological Systems: From Heart to Brain. Understanding Complex Systems. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9143-8_1

Download citation

Publish with us

Policies and ethics