Advertisement

Combining GIS and GAMs to identify potential habitats of squid Loligo vulgaris in the Northwestern Mediterranean

  • Pilar Sanchez
  • Montserrat Demestre
  • Laura Recasens
  • Francesc Maynou
  • Paloma Martin
Part of the Developments in Hydrobiology book series (DIHY, volume 203)

Abstract

We characterised the most productive areas for the commercial squid Loligo vulgaris off the Catalan Coast based on the combined integration of SST and PAR satellite data. We present the distribution of these areas during the most productive months in relation to the spatiotemporal presence of paralarvae of this species off the Catalan Coast. The work is based on Generalised Additive Models (GAMs) that combine the simultaneous analysis of the effect of different environmental explanatory variables from satellite imagery data to obtain the optimal model for paralarvae of the squid. The proposed model helped define the potential Essential Fish Habitat (EFH) for squid paralarvae recruitment, based on the best environmental conditions and is consistent with the higher LPUE observed four months later. The EFH defined for paralarvae recruitment by the model was detected every year in May in the areas both north and central of the Catalan Coast, the same areas where fishing ports evidence the highest commercial yield of squid.

Keywords

Loligo vulgaris NW Mediterranean GIS GAM Squid LPUE Environment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkhipkin, A. I., 1995. Age, growth and maturation of the European squid Loligo vulgaris (Myopsidae, Loliginidae) on the west Saharan Shelf. Journal of the Marine Biological Association of the United Kingdom 75: 593–604.Google Scholar
  2. Benaka, L., 1999. Fish Habitat: Essential Fish Habitat and Rehabilitation. American Fisheries Society, Bethesda Maryland.Google Scholar
  3. Boletzky, S. V., 1979. Observations on early post-embryonic development of Loligo vulgaris (Mollusca, Cephalopoda). Rapport Commission Internationale Mer Méditerranée 25/ 26: 10.Google Scholar
  4. Boucher-Rodoni, R., E. Boucaud-Camou & K. Mangold, 1987. Feeding and digestion. In Boyle, P. R. (ed.), Cephalopod Life Cycles. Comparative reviews II. Academic Press, London: 85–108.Google Scholar
  5. Boyle, P. R. & G. J. Pierce, 1994. Fishery biology of Northeast Atlantic squid: An overview. Fisheries Research 21: 1–15.CrossRefGoogle Scholar
  6. Boyle, P. & P. Rodhouse, 2005. Cephalopods: Ecology and Fisheries. Blackwell Books, London.Google Scholar
  7. Brown, A. M., J. M. Bellido, V. D. Valavanis & A. Giraldez, 2006. Investigating the distribution of small pelagic fish in Spanish Maditerranean waterns using environmental modelling and essential fish habitat mapping. ICES CM 2006/O:13.Google Scholar
  8. Challier, L., J. Royer, G. J. Pierce, N. Bailey, B. Roel & J. P. Robin, 2005. Environmental and stock effects on recruitment variability in the English Channel squid Loligo forbesi. Aquatic Living Resources 18: 353–360.CrossRefGoogle Scholar
  9. Chen, C. S., G. J. Pierce, J. Wang, J. P. Robin, J. C. Poulard, J. Pereira, A. F. Zuur, P. R. Boyle, N. Bailey, D. J. Beare, P. Jereb, S. Ragonese, A. Mannini & L. Orsi-Relini, 2006. The apparent disappearance of Loligo forbesi from the south of its range in the 1990s: Trends in Loligo spp abundance in the northeast Atlantic and possible environmental influences. Fisheries Research 78: 44–54.CrossRefGoogle Scholar
  10. Denis, V., J. Lejeune & J. P. Robin, 2002. Spatio-temporal analysis of commercial trawler data using General Additive Models: Patterns of Loliginid squid abundance in the northeast Atlantic. ICES Journal of Marine Science 59: 633–648.CrossRefGoogle Scholar
  11. Eastwood, P. D., G. J. Meaden & A. Grioche, 2001. Modelling spatial variation in spawning habitat suitability for the sole Solea solea using regression quintiles and GIS procedures. Marine Ecology Progress Series 224: 251–266.CrossRefGoogle Scholar
  12. Guerra, A., 1992. Mollusca, Cephalopoda. Fauna Ibérica, Museo Nacional de Ciencias Naturales, Madrid: 327.Google Scholar
  13. Guerra, A. & F. Rocha, 1994. The life history of Loligo vulgaris and Loligo forbesi (Cephalopoda: Loliginidae) in Galician waters (NW Spain). Fisheries Research 21: 43–69.CrossRefGoogle Scholar
  14. Guerra, A., P. Sanchez & F. Rocha, 1994. The Spanish fishery for Loligo: Recent trends. Fisheries Research 21: 217–230.CrossRefGoogle Scholar
  15. Koubbi, P., C. Loots, G. Cotonnec, X. Harlay, A. Grioche, S. Vaz, C. Martin, M. Walkey & A. Carpentier, 2006. Spatial patterns and GIS habitat modelling of Solea solea, Pleuronectes flesus and Limanda limanda fish larvae in the eastern English Channel during the spring. Scientia Marina 70: 147–157.CrossRefGoogle Scholar
  16. Lefkaditou, E., P. Sanchez, A. Tsangidis & A. Adamidou, 1998. A preliminary investigation on how meteorological changes may affect beach-seine catches of Loligo vulgaris in the Thracian Sea (Eastern Mediterranean). South African Journal of Marine Science 20: 453–461.Google Scholar
  17. Lloret, J. & J. Lleonart, 2002. Recruitment dynamics of eight fisheries species in the nortwestern Mediterranean Sea. Scientia Marina 66: 77–88.CrossRefGoogle Scholar
  18. Mangold-Wirz, K., 1963. Biologie des Cephalopodes benthiques et nectoniques de la Mer Catalane. Vie et Millieu 13: 285.Google Scholar
  19. Meaden, G. J. & T. Do Chi, 1996. Geographical Information Systems. Applications to Marine Fisheries. FAO Fisheries Techical Paper 356, FAO, Rome.Google Scholar
  20. Messenger, J. B., 1968. The visual attack of the cuttlefish Sepia officinalis. Animal Behaviour 16: 342–357.PubMedCrossRefGoogle Scholar
  21. Moreno, A., M. M. Cunha & J. M. F. Pereira, 1994. Population biology of the veined squid (Loligo forbesi) and European squid (Loligo vulgaris) from the Portuguese coast. Fisheries Research 21: 71–86.CrossRefGoogle Scholar
  22. Natsukari, Y. & N. Komine, 1992. Age and growth estimation of the European squid Loligo vulgaris, based on statolith microstructure. Journal of the Marine Biological Association of the United Kingdom 72: 271–280.CrossRefGoogle Scholar
  23. Pertierra, J. P., L. Recasens & V. D. Valavanis, 2001. Development of a GIS platform for the compilation and analysis of demersal species biomass indices off the Catalan coast (NW Mediterranean Sea). In Nishida, T., P. J. Kailola, C. E. Hollingworth (eds), Proceedings of the First International Symposium on Geographic Information Systems (GIS) in Fishery Science. Seattle Washington: 134–142.Google Scholar
  24. Pierce, G. J. & A. Guerra, 1994. Stock assessment methods used for cephalopods fisheries. Fisheries Research 21: 255–285.CrossRefGoogle Scholar
  25. Pierce, G. J., J. Wang & V. D. Valavanis, 2002. Application of GIS Cephalopod fisheries: Workshop report. Bulletin of Marine Science 71: 35–46.Google Scholar
  26. Raya, C. P., E. Balguerias, M. M. Fernández-Nu’ñez & G. J. Pierce, 1999. On the reproduction and age of the squid Loligo vulgaris from the Saharan Bank (north-west African coast). Journal of the Marine Biological Association of the United Kingdom 79: 111–120.CrossRefGoogle Scholar
  27. Sabates, A. & M. Maso, 1990. Effect of a shelf-slope front on spatial distribution of mesopelagic fish larvae in the Western Mediterranean. Deep Sea Research 37: 1085–1098.CrossRefGoogle Scholar
  28. Sakurai, Y., H. Kiyofuji, S. Saitoh, T. Goto & Y. Hiyama, 2000. Changes in inferred spawning areas of Todarodes pacificus (Cephalopoda Ommastrephidae) due to changing environmental conditions. ICES Journal of Marine Science 57: 24–30.CrossRefGoogle Scholar
  29. Salat, J., J. Font & A. Cruzado, 1978. Datos oceanográficos frente a Barcelona (1975–1976). Datos Informativos Instituto Investigaciones Pesqueras 5: 73.Google Scholar
  30. Sanchez, P. & P. Martin, 1993. Population dynamics of the exploited cephalopod species of the Catalan Sea (NW Mediterranean). Scientia Marina 57: 153–159.Google Scholar
  31. Tinbergen, L. & J. Verwey, 1945. The biology of Loligo vulgaris Lam. Translation Services Fisheries Research Board of Canada 2733: 35.Google Scholar
  32. Valavanis, V. D., S. Georgakarakos, D. Koutsoubas, C. Arvanitidis & J. Haralabous, 2002. Development of a marine information system for cephalopod fisheries in Eastern Mediterranean. Bulletin of Marine Science 71: 867–882.Google Scholar
  33. Valavanis, V. D., S. Georgakarakos, A. Kapantagakis, A. Palialexis & I. Katara, 2004. A GIS environmental modelling approach to essential fish habitat designation. Ecological Modelling 178: 417–427.CrossRefGoogle Scholar
  34. Villanueva, R., 2000. Effect of temperature on statolith growth of the European squid Loligo vulgaris during early life. Marine Biology 136: 449–460.CrossRefGoogle Scholar
  35. Wood, S. N., 2000. Modelling and smoothing parameter estimation with multiple quadratic penalties. Journal of the Royal Statistical Society 62: 413–428.CrossRefGoogle Scholar
  36. Worms, J., 1983. Loligo vulgaris. In Boyle, P. R. (ed.), Cephalopods Life Cycle, Vol. I. Species Account. Academic Press, London: 143–157.Google Scholar
  37. Zuur, A. F. & G. J. Pierce, 2004. Common trends in Northeast Atlantic Squid time series. Journal of Sea Research 52: 57–72.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Pilar Sanchez
    • 1
  • Montserrat Demestre
    • 1
  • Laura Recasens
    • 1
  • Francesc Maynou
    • 1
  • Paloma Martin
    • 1
  1. 1.Institut de Cie’ncies del MarConsejo Superior de Investigaciones CientíficasBarcelonaSpain

Personalised recommendations