Distribution of swordfish in the eastern Mediterranean, in relation to environmental factors and the species biology

  • George Tserpes
  • Panagiota Peristeraki
  • Vasilis D. Valavanis
Part of the Developments in Hydrobiology book series (DIHY, volume 203)

Abstract

Swordfish catch per unit effort (CPUE) data from the Greek commercial fisheries operating in the eastern Mediterranean have been modeled on a seasonal basis as functions of environmental spatial, and temporal variables, including Sea Surface Temperature (SST), Chlorophyll-a (Chl-a), Mean Sea Level Anomaly (MSLA), Latitude, Longitude and Year. All variables were highly significant but most of the CPUE variation was explained by the spatial factors. Model predictions were used to generate swordfish density distributions maps, which revealed that swordfish migrates toward the eastern Levantine for spawning and suggested the existence of a major spawning ground in a region between the islands of Cyprus and Rhodes surrounded by persistent eddies and the Rhodes gyre. During periods other than the time of spawning migration, swordfish distribution is much broader with relatively higher concentrations occurring in areas with important prey potential.

Keywords

Swordfish Mediterranean Environmental parameters Migration Reproduction Distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakun, A., 2006. Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage. Scientia Marina 70: 105–122.CrossRefGoogle Scholar
  2. Bigelow, K. A., C. H. Boggs & X. He, 1999. Environmental effects on swordfish and blue shark catch rates in the US North Pacific longline fishery. Fisheries Oceanography 8: 178–198.CrossRefGoogle Scholar
  3. Carey, F. G. & B. H. Robison, 1981. Daily patterns in the activities of swordfish, Xiphias gladius, observed by acoustic telemetry. Fishery Bulletin U.S. 79: 277–292.Google Scholar
  4. Cavallaro, G., A. Potoschi & A. Cefali, 1991. Fertility gonadsomatic index and catches of eggs and larvae of Xiphias gladius L. 175 8 in the southern Tyrrhenian Sea. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 35: 502–507.Google Scholar
  5. Cleveland, W. S. & S. J. Devlin, 1988. Locally-weighted regression: an approach to regression analysis by local fitting. Journal of American Statistical Association 83: 596–610.CrossRefGoogle Scholar
  6. Damalas, D., P. Megalofonou & M. Apostolopoulou, 2007. Environmental, spatial, temporal and operational effects on swordfish (Xiphias gladius) catch rates of eastern Mediterranean Sea longline fisheries. Fisheries Research 84: 233–246.CrossRefGoogle Scholar
  7. Daskalov, G., 1999. Relating fish recruitment to stock biomass and physical environment in the Black Sea using generalized additive models. Fisheries Research 41: 1–23.CrossRefGoogle Scholar
  8. De La Serna, J. M., J. M. Ortiz de Urbina & D. Macias, 1996. Observations on sex-ratio, maturity and fecundity by length-class for swordfish (Xiphias gladius) captured with surface longline in the western Mediterranean. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 45: 117–122.Google Scholar
  9. Doherty, P. J., 1987. Light-traps: selective but useful devices for quantifying the distributions and a abundance of larval fishes. Bulletin of Marine Science 41: 423–431.Google Scholar
  10. Ehrhardt, N. M., 1992. Age and growth of swordfish, Xiphias gladius, in the northwestern Atlantic. Bulletin of Marine Science 50: 292–301.Google Scholar
  11. Golden Software, 2002. SURFER, Version 8. Golden Software Inc., Golden, Colorado.Google Scholar
  12. Hastie, T. J. & R. J. Tibshirani, 1990. Generalized Additive Models. Chapman and Hall, London: 335.Google Scholar
  13. Kotoulas, G., A. Magoulas, N. Tsimenides & E. Zouros, 1995. Marked mitochondrial DNA differences between Mediterranean and Atlantic populations of the swordfish, Xiphias gladius. Molecular Ecology 4: 473–481.CrossRefGoogle Scholar
  14. Kotoulas, G., J. Mejuto, G. Tserpes, B. Garcia-Cortes, P. Peristeraki, J. M. De la Serna & A. Magoulas, 2003. DNA microsatellite markers in service of swordfish stock structure analysis in the Atlantic and Mediterranean. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 55: 1632–1639.Google Scholar
  15. Maravelias C. D., & C. Papaconstantinou, 2003. Size-related habitat use, aggregation patterns and abundance of anglerfish (Lophius budegassa) in the Mediterranean Sea determined by generalized additive modeling. Journal Marine Biological Association U.K. 83: 1171–1178.CrossRefGoogle Scholar
  16. Mejuto, J., J. M. De la Serna & B. Garcia, 1995. An overview of the sex-ratio at size of the swordfish (Xiphias gladius L.) around the world: similarity between different strata. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 44: 197–205.Google Scholar
  17. Mejuto, J., J. M. De la Serna & B. Garcia, 1998. Some considerations on the spatial and temporal variability in the sex-ratio at size of the swordfish (Xiphias gladius L.). International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 48: 205–215.Google Scholar
  18. Orsi-Relini, L., F. Garibaldi, C. Cima & G. Palandri, 1995. Feeding of the swordfish, the bluefin tuna and other pelagic nekton in the western Ligurian Sea. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 44: 283–286.Google Scholar
  19. Ozsoy, E., A. Hecht, U. Unluata, S. Brenner, H. I. Sur, J. Bishop, M. A. Latif & T. O. Rozentraub, 1993. A synthesis of the Levantine Basin circulation and hydrography, 1985–1990. Deep-Sea Research II 40: 1075–1119.CrossRefGoogle Scholar
  20. Palko, R. J., G. L. Beardsley, & W. J. Richards, 1981. Synopsis of the biology of the swordfish Xiphias gladius L. National Oceanic and Atmospheric Administration. Technical Report National Marine Fisheries Service, Circular: 441.Google Scholar
  21. Peristeraki, P., G. Lazarakis, K. Skarvelis, N. Kypraios & G. Tserpes, 2007. Temporal growth differences of swordfish recruits in the eastern Mediterranean. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 60: 2063–2068.Google Scholar
  22. Rey, J. C., 1988. Comentarios sobre las areas de reproduccion del pez espada (Xiphias gladius) en el Atlantico y Mediterraneo. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 27: 180–192.Google Scholar
  23. Sibson, R., 1981. A brief description of natural neighbor interpolation. In Barnett, V. (ed.), Interpreting Multivariate Data. John Wiley & Sons, New York: 21–36.Google Scholar
  24. Stergiou, K. I., G. Tserpes & P. Peristeraki, 2003. Modelling and forecasting monthly swordfish catches in the Eastern Mediterranean. Sciencia Marina 67: 283–290.Google Scholar
  25. Tserpes, G., C. Darby, A. Di Natale, P. Peristeraki & A. Mangano, 2003a. Assessment of the Mediterranean swordfish stock based on Greek and Italian fisheries data. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 55: 94–106.Google Scholar
  26. Tserpes, G., D. K. Moutopoulos, P. Peristeraki, G. Katselis & C. Koutsikopoulos, 2006. Study of swordfish fishing dynamics in the eastern Mediterranean by means of machine-learning approaches. Fisheries Research 78: 196–202.CrossRefGoogle Scholar
  27. Tserpes, G. & P. Peristeraki, 2004. Catchability differences among the longlines used in the Greek swordfish fishery. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 56: 860–863.Google Scholar
  28. Tserpes, G. & P. Peristeraki, 2007. Effects of a seasonal closure of the Mediterranean swordfish fisheries on the stock production levels. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 60: 2059–2062.Google Scholar
  29. Tserpes, G., P. Peristeraki & A. Di Natale, 2001a. Size distribution of swordfish landings in the central and eastern Mediterranean. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 52: 733–739.Google Scholar
  30. Tserpes, G., P. Peristeraki & A. Di Natale, 2003b. Swordfish abundance trends in the Mediterranean. In Mediterranean Biological Time Series, Commission Internationale pour l’Exploration Scientifique de la mer Mediterranee (CIESM) Workshop Monographs 22: 101–108.Google Scholar
  31. Tserpes, G., P. Peristeraki & S. Somarakis, 2001b. On the reproduction of swordfish (Xiphias gladius L.) in the Eastern Mediterranean. International Commission for the Conservation of Atlantic Tunas. Collective Volume of Scientific Papers 52: 740–744.Google Scholar
  32. Tserpes, G. & N. Tsimenides, 1995. Determination of age, growth of swordfish, Xiphias gladius L., 1758, in the eastern Mediterranean using anal-fin spines. Fishery Bulletin 93: 594–602.Google Scholar
  33. Venables, W. N. & B. D Ripley, 1997. Modern Applied Statistics with S-PLUS, Second Edition. Springer.Google Scholar
  34. Walsh, A., & P. Kleiber, 2001. Generalized additive model and regression tree analyses of blue shark (Prionace glauca) catch rates by the Hawaii-based commercial longline fishery. Fisheries Research 53: 115–131.CrossRefGoogle Scholar
  35. Zervakis, V., A. Theocharis & D. Georgopoulos, 2005. Circulation and hydrography of the open seas. In: Papathanassiou, E. & A. Zenetos (eds), State of the Hellenic Marine Environment. Hellenic Center for Marine Research Publication: 104–111.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • George Tserpes
    • 1
  • Panagiota Peristeraki
    • 1
  • Vasilis D. Valavanis
    • 2
  1. 1.Institute of Marine Biological ResourcesHellenic Centre for Marine ResearchThalassocosmosGreece
  2. 2.Marine GIS LaboratoryInstitute of Marine Biological Resources, Hellenic Centre for Marine ResearchThalassocosmosGreece

Personalised recommendations