European anchovy (Engraulis encrasicolus) landings and environmental conditions on the Catalan Coast (NW Mediterranean) during 2000–2005

  • Paloma Martín
  • Nixon Bahamon
  • Ana Sabatés
  • Francesc Maynou
  • Pilar Sánchez
  • Montserrat Demestre
Part of the Developments in Hydrobiology book series (DIHY, volume 203)

Abstract

Generalized additive models are proposed for a better understanding of the underlying mechanisms for anchovy variations in abundance. Environmental variables derived from satellite imagery (surface chlorophyll, sea surface temperature and wind-mixing index), river discharge (Rhône River and Ebre River) and anchovy landings (landings per unit of effort) as proxy for abundance were used, and three fishing zones were defined along the Catalan Coast. A time shift among wind index mixing, sea surface temperature and chlorophyll was observed for these variables to be significantly correlated with anchovy. Results pointed out to processes that appear to greatly influence species abundance and affect different life stages of anchovy (conditions preceding reproduction, larvae growth and survival and recruits growth). A high proportion of anchovy LPUE variability could be explained by environmental variables. Thus, some univariate models explained deviance are more than 50%, even up to around 70% of anchovy variability. In several cases the deviance explained by a given variable was even higher at the longer time-lags. Among all univariate and bivariate models fitted, the model that best explained anchovy LPUE variability, 79% of total deviance, was a model proposed for the central zone, based on the additive effect of surface chlorophyll and Rhône River discharge, considering time lags of 15 and 18 months, respectively, for each variable.

Keywords

Engraulis encrasicolus NW Mediterranean Environmental conditions Anchovy landings GAM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alheit, J. & E. Hagen, 1997. Long-term climate forcing of European herring and sardine populations. Fisheries Oceanography 6: 130–139.CrossRefGoogle Scholar
  2. Bailey, K. M. & E. D. Houde, 1989. Predation on early developmental stages of marine fishes and the recruitment problem. Advances in Marine Biology 25: 1–83.CrossRefGoogle Scholar
  3. Bakun, A., 1996. Patterns in the ocean-Ocean processes and marine population dynamics. California Sea Grant College System, NOAA.Google Scholar
  4. Bakun, A. & K. Broad, 2003. Environmental loopholes and fish population dynamics: comparative pattern recognition with particular focus on El Niño effects in the Pacific. Fisheries Oceanography 12: 458–473.CrossRefGoogle Scholar
  5. Bakun, A. & R. H. Parrish, 1991. Comparative studies of coastal pelagic fish reproductive habitats: the anchovy (Engraulis anchoita) of the southwestern Atlantic. ICES Journal of Marine Science 48: 343–361.CrossRefGoogle Scholar
  6. Basilone, G., C. Guisande, B. Patti, S. Mazzola, A. Cuttitta, A. Bonnano & A. Kallianotis, 2004. Linking habitat conditions and growth in the European anchovy (Engraulis encrasicolus). Fisheries Research 68: 9–190.CrossRefGoogle Scholar
  7. Basilone, G., C. Guisande, B. Patti, S. Mazzola, A. Cuttitta, A. Bonnano, A. R. Vergara & I. Maneiro, 2006. Effect of habitat conditions on reproduction of the European anchovy (Engraulis encrasicolus) in the Strait of Sicily. Fisheries Oceanography 15: 271–280.CrossRefGoogle Scholar
  8. Beamish, R. J., 1995. Climate change and northern fish populations. Canadian Special Publications in Fisheries and Aquatic Sciences 121: 739.Google Scholar
  9. Blaxter, J. H. S. & J. R. Hunter, 1982. The biology of clupeoid fishes. Advances in Marine Biology 20: 1–223.CrossRefGoogle Scholar
  10. Borja, A., A. Uriarte, V. Valencia, L. Motos & A. Uriarte, 1996. Relationships between anchovy (Engraulis encrasicolus L.) recruitment and the environment in the Bay of Biscay. Scientia Marina 60: 179–192.Google Scholar
  11. Boyer, D. C., H. J. Boyer, I. Fossen & A. Kreiner, 2001. Changes in abundance of the northern Benguela sardine stock during the decade 1990–2000, with comments on the relative importance of fishing and the environment. South African Journal of Marine Science 23: 67–84.Google Scholar
  12. Castro, L. R. & R. K. Cowen, 1991. Environmental factors affecting the early life history of bay anchovy Anchoa mitchilli in Great South Bay, New York. Marine Ecology Progress Series 76: 235–247.CrossRefGoogle Scholar
  13. Cleveland, R. B., W. S. Cleveland, J. E. McRae & I. Terpenning, 1990. STL: a seasonal-trend decomposition procedure based on Loess. Journal of Official Statistics 6: 3–73.Google Scholar
  14. Cole, J. & J. McGlade, 1998. Clupeoid population variability, the environment and satellite imagery in coastal upwelling systems. Reviews in Fish Biology and Fisheries 8: 445–471.CrossRefGoogle Scholar
  15. Coombs, S. H., O. Giovanardi, N. Halliday, G. Franceschini, D. V. P. Conway, L. Manzueto, C. D. Barrett & I. R. B. McFadzen, 2003. Wind mixing, food availability and mortality of anchovy larvae Engraulis encrasicolus in the northern Adriatic Sea. Marine Ecology Progress Series 248: 221–235.CrossRefGoogle Scholar
  16. Cruzado, A. & Z. R. Velásquez, 1990. Nutrients and phytoplankton in the Gulf of Lions, northwestern Mediterranean. Continental and Shelf Research 10: 931–942.CrossRefGoogle Scholar
  17. Cury, P., A. Bakun, R. J. M. Crawford, A. Jarre, R. Quiñones, L. Shannon & H. Verheye, 2000. Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES Journal of Marine Science 57: 603–618.CrossRefGoogle Scholar
  18. Daskalov, G., 1999. Relating fish recruitment to stock biomass and physical environment in the Black Sea using generalized additive models. Fisheries Research 41: 1–23.CrossRefGoogle Scholar
  19. Estrada, M., 1985. Deep phytoplankton and chlorophyll maxima in the Western Mediterranean. In Moraitou-Apostolopoulou, M. & V. Kiortis (eds), Mediterranean Marine Ecosystems. Plenum Press, New York: 247–276. FAO Fish Stat Dataset, http://www.fao.org/fishery/statistics/ global-capture-production.Google Scholar
  20. Fernández de Puelles, M. L., F. Alemany & J. Jansá, 2007. Zooplankton time-series in the Balearic Sea (Western Mediterranean): variability during the decade 1994–2003. Progress in Oceanography 74: 329–354.CrossRefGoogle Scholar
  21. García, A. & I. Palomera, 1996. Anchovy early life history and its relation to its surrounding environment in the Western Mediterranean Basin. Scientia Marina 60: 155–166.Google Scholar
  22. García Lafuente, J., J. M. Vargas, F. Criado, A. García, J. Delgado & S. Mazzola, 2005. Assessing the variability of hydrographic processes influencing the life cycle of the Sicilian Channel anchovy, Engraulis encrasicolus, by satellite imagery. Fisheries Oceanography 14: 32–46.CrossRefGoogle Scholar
  23. Grimes, C. B., 2001. Fishery production and the Mississippi river discharge. Fisheries 26: 17–26.CrossRefGoogle Scholar
  24. Hastie, T. J. & R. J. Tibshirani, 1990. Generalized Additive Models. Chapman & Hall, New York.Google Scholar
  25. Hay, D. E. & J. R. Brett, 1988. Maturation and fecundity of Pacific herring (Clupea harengus pallasi). Canadian Journal of Fisheries and Aquatic Sciences 45: 399–406.CrossRefGoogle Scholar
  26. Lapolla, A. E., 2001. Bay anchovy Anchoa mitchilli in Narragansett Bay, Rhode Island. II. Spawning season, hatchdate distribution and young-of-the-year growth. Marine Ecology Progress Series 217: 103–109.CrossRefGoogle Scholar
  27. Lasker, R., 1975. Field criteria for survival of anchovy larvae: the relation between inshore chlorophyll maximum layers and successful first feeding. U.S. Fisheries Bulletin 73: 453–462.Google Scholar
  28. Lasker, R., 1981. The role of a stable ocean in larval fish survival and subsequent recruitment. In Lasker, R. (ed.), Marine fish larvae: morphology, ecology, and relation to fisheries. Washington Sea Grant Program. University of Washington Press, Seattle: 80–87.Google Scholar
  29. Lloret, J., J. Lleonart, I. Sole & J. M. Fromentin, 2001. Fluctuations of landings and environmental conditions in the north-western Mediterranean Sea. Fisheries Oceanography 10: 33–50.CrossRefGoogle Scholar
  30. Lloret, J., I. Palomera, J. Salat & I. Solé, 2004. Impact of freshwater input and wind on landings of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) in shelf waters surrounding the Ebre River Delta (north-western Mediterranean). Fisheries Oceanography 13: 102–110.CrossRefGoogle Scholar
  31. Lluch-Belda, D., R. M. J. Crawford, T. Kawasaki, A. D. MacCall, R. H. Parrish, R. A. Schwartzlose & P. E. Smith, 1989. World-wide fluctuations of sardine and anchovy stocks: the regime problem. South African Journal of marine Science 8: 195–205.Google Scholar
  32. López-García, M. J., C. Millot, J. Font & E. García-Ladona, 1994. Surface circulation variability in the Balearic Basin. Journal of Geophysical Research 99: 3285–3296.CrossRefGoogle Scholar
  33. Luo, J. & J. A. Musick, 1991. Reproductive biology of the bay anchovy in Chesapeake Bay. Transactions of the American Fisheries Society 120: 701–710.CrossRefGoogle Scholar
  34. Palomera, I., 1992. Spawning of anchovy Engraulis encrasicolus in the North Western Mediterranean relative to hydrographic features in the region. Marine Ecology Progress Series 79: 215–223.CrossRefGoogle Scholar
  35. Palomera, I., M. P. Olivar, J. Salat, A. Sabatés, M. Coll, A. García & B. Morales-Nin, 2007. Small pelagic fish in the NW Mediterranean Sea: an ecological review. Progress in Oceanography 73: 377–396.CrossRefGoogle Scholar
  36. Palomera, I. & A. Sabatés, 1990. Co-occurrence of Engraulis encrasicolus and Sardinella aurita eggs and larvae in the western Mediterranean. Scientia Marina 54: 51–67.Google Scholar
  37. Patti, B., A. Bonnano, G. Basilone, S. Goncharov, S. Mazzola, G. Buscaino, A. Cuttitta, J. García Lafuente, A. García, V. Palumbo & G. Cosimi, 2004. Inter-annual fluctuations in acoustic biomass and in landings of small pelagic fish populations in relation to hydrology in the Strait of Sicily. Chemistry and Ecology 20: 365–375.CrossRefGoogle Scholar
  38. Peebles, E. B., 2002. Temporal resolution of biological and physical influences on bay anchovy Anchoa mitchilli egg abundance near a river-plume frontal zone. Marine Ecology Progress Series 237: 257–269.CrossRefGoogle Scholar
  39. Peebles, E., B. Hall & J. R. Tolley, 1996. Egg production by the bay anchovy Anchoa mitchilli in relation to adult and larval prey fields. Marine Ecology Progress Series 131: 61–73.CrossRefGoogle Scholar
  40. Pertierra, J. P. & J. Lleonart, 1996. NW Mediterranean anchovy fisheries. Scientia Marina 60: 257–267.Google Scholar
  41. Plounevez, S. & G. Champalbert, 2000. Diet, feeding behaviour and trophic activity of the anchovy (Engraulis encrasicolus L.) in the Gulf of Lions (Mediterranean Sea). Oceanografica Acta 23: 175–192.CrossRefGoogle Scholar
  42. Razouls, C. & J. H. M. Kouwenberg, 1993. Spatial distribution and seasonal variation of mesozooplankton biomass in the Gulf of Lions (northwestern Mediterranean). Oceanologica Acta 16: 393–401.Google Scholar
  43. Regner, J. H., 1996. Effects of environmental changes on early stages and reproduction of anchovy in the Adriatic Sea. Scientia Marina 60: 167–177.Google Scholar
  44. Sabatés, A., P. Martín, J. Lloret & V. Raya, 2006. Sea warming and fish distribution: the case of the small pelagic fish Sardinella aurita in the western Mediterranean. Global Change Biology 12: 2209–2219.CrossRefGoogle Scholar
  45. Sabatés, A., M. P. Olivar, J. Salat, I. Palomera & F. Alemany, 2007a. Physical and biological processes controlling the distribution of fish larvae in the NW Mediterranean. Progress in Oceanography 74: 355–376.CrossRefGoogle Scholar
  46. Sabatés, A., J. Salat & M. P. Olivar, 2001. Advection of continental water as export mechanism for anchovy, Engraulis encrasicolus, larvae. Scientia Marina 65: 77–88.Google Scholar
  47. Sabatés, A., J. Salat, I. Palomera, M. Emelianov, M. L. Fernández de Puelles & M. P. Olivar, 2007b. Advection of anchovy larvae along the Catalan continental slope (NW Mediterranean). Fisheries Oceanography 16: 130–141.CrossRefGoogle Scholar
  48. Santojanni, A., E. Arneri, V. Bernardini, N. Cingolani, M. Di Marco & A. Russo, 2006. Effects of environmental variables on recruitment of anchovy in the Adriatic Sea. Climate Research 31: 181–193.CrossRefGoogle Scholar
  49. Somarakis, S., 2005. Marked interannual differences in reproductive parameters and daily egg production of anchovy in the northern Aegean Sea. Belgian Journal of Zoology 135: 247–252.Google Scholar
  50. Somarakis, S., I. Palomera, A. García, L. Quintanilla, C. Koutsikopoulos, A. Uriarte & L. Motos, 2004. Daily egg production of anchovy in European waters. ICES Journal of Marine Science 61: 944–958.CrossRefGoogle Scholar
  51. Tudela, S. & I. Palomera, 1995. Diel feeding intensity and daily ration in the anchovy Engraulis encrasicolus in the Northwest Mediterranean sea during the spawning period. Marine Ecology Progress Series 129: 55–61.CrossRefGoogle Scholar
  52. Tudela, S. & I. Palomera, 1997. Trophic ecology of European anchovy Engraulis encrasicolus in the Catalan Sea (Northwest Mediterranean). Marine Ecology Progress Series 160: 121–134.CrossRefGoogle Scholar
  53. Tudela, S., I. Palomera & G. Quílez, 2002. Feeding of anchovy Engraulis encrasiclolus larvae in the northwest Mediter-ranean. Journal of the Marine Biological Association of the United Kingdom 82: 349–350.CrossRefGoogle Scholar
  54. Ueyama, R. & B. C. Monger, 2005. Wind-induced modulation of seasonal phytoplankton blooms in the North Atlantic derived from satellite observations. Limnology and Oceanography 50: 1820–1829.CrossRefGoogle Scholar
  55. Wood, S. N., 2000. Modelling and smoothing parameter estimation with multiple quadratic penalties. Journal of the Royal Statistical Society 62: 413–428.CrossRefGoogle Scholar
  56. Zarrad, R., H. Missaoui, F. Alemany, R. M. Salah, A. García, M. Ridha, J. Othman & E. A. Amor, 2006. Spawning areas and larval distributions of anchovy Engraulis encrasicolus in relation to environmental conditions in the Gulf of Tunis (Central Mediterranean Sea). Scientia Marina 70S2: 137–146.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Paloma Martín
    • 1
  • Nixon Bahamon
    • 1
  • Ana Sabatés
    • 1
  • Francesc Maynou
    • 1
  • Pilar Sánchez
    • 1
  • Montserrat Demestre
    • 1
  1. 1.Institut de Cie’ncies del MarConsejo Superior de Investigaciones CientíficasBarcelonaSpain

Personalised recommendations