Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 156))

  • 2888 Accesses

As mentioned in the Introduction (Chapter 1), the study of targeted energy transfer (TET) in strongly nonlinear and non-conservative oscillators poses some distinct technical challenges, and dictates the use of concepts, formulations, analytical methodologies and computational techniques from different fields of applied mathematics and engineering, such as dynamical systems and bifurcation theory, theory of asymptotic approximations, numerical signal processing, and experimental dynamics. Therefore, before we initiate our study of the nonlinear dynamics of TET, it is appropriate to provide first some background information related to certain key concepts and methodologies that will be applied in the work that follows.

Specifically, we will briefly discuss the concepts of nonlinear normal mode (NNM) and nonlinear mode localization in discrete and continuous oscillators, and the occurence of nonlinear internal resonances, transient resonance captures (TRCs) and sustained resonance captures (SRCs) in undamped or damped, forced or unforced systems of coupled oscillators. These concepts will provide us with the necessary theoretical framework to base our theoretical study of the dynamics of TET; moreover, using these concepts we will be able to identify, interprete, and place into the right context complex nonlinear dynamical phenomena related to TET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, P.W., Absence of diffusion in certain random latticesPhys. Rev. 109, 1492–1505, 1958

    Article  Google Scholar 

  • Andrianov, I.V., Asymptotic construction of nonlinear normal modes for continuous systemsNonl. Dyn. 51, 99–109, 2008

    Article  MathSciNet  MATH  Google Scholar 

  • Andrianov, I.V., Awrejcewicz, J., Barantsev, R.G., Asymptotic approaches in mechanics: New parameters and proceduresAppl. Mech. Rev. 56(1), 87–110, 2003

    Article  Google Scholar 

  • Argoul, P., Le, T.P., Instantaneous indicators of structural behavior based on the continuous Cauchy wavelet analysisMech. Syst. Signal Proces. 17(1), 243–250, 2003

    Article  Google Scholar 

  • Arnold, V.I. (Ed.)Dynamical Systems III, Encyclopaedia of Mathematical Sciences, Vol. 3, Springer-Verlag, Berlin, 1988

    Google Scholar 

  • Aubrecht, J., Vakakis, A.F., Localized and non-localized nonlinear normal modes in a multi-span beam with geometric nonlinearitiesJ. Vib. Acoust. 118(4), 533–542, 1996

    Article  Google Scholar 

  • Aubrecht, J., Vakakis, A.F., Tsao, T.C., Bentsman, J., Experimental study of nonlinear transient motion confinement in a system of coupled beamsJ. Sound Vib. 195(4), 629–648, 1996

    Article  Google Scholar 

  • Bakhtin, V.I., Averaging in multi-frequency systemsFunct. An. Appl. 2083–88 (English translation fromFunkts. Anal. Prilozh. 20, 1–7, 1986 [in Russian])

    Article  MATH  MathSciNet  Google Scholar 

  • Belhaq, M., Lakrad, F., The elliptic multiple scales method for a class of autonomous strongly nonlinear oscillatorsJ. Sound Vib. 234(3), 547–553, 2000

    Article  MathSciNet  Google Scholar 

  • Bellizzi, S., Bouc, R., A new formulation for the existence and calculation of nonlinear normal modesJ. Sound Vib. 287, 545–569, 2005

    MathSciNet  Google Scholar 

  • Belokonov, V., Zabolotnov, M., Estimation of the probability of capture into a resonance mode of motion for a spacecraft during its descent in the atmosphere.Cosmic Res. 40, 467–478, 2002 (translated fromKosmicheskie Issledovaniya 40, 503–514, 2002)

    Article  Google Scholar 

  • Boivin, N., Pierre, C., Shaw, S.W., Nonlinear modal analysis of structural systems featuring internal resonancesJ. Sound Vib. 182, 336–341, 1995

    Article  Google Scholar 

  • Bosley, D., Kevorkian, J., Adiabatic invariance and transient resonance in very slowly varying oscillatory Hamiltonian systemsSIAM J. Appl. Math. 52, 494–527, 1992

    Article  MATH  MathSciNet  Google Scholar 

  • Burns, T., Jones, C., A mechanism for capture into resonancePhysica D 69, 85–106, 1993

    Article  MATH  MathSciNet  Google Scholar 

  • Byrd, P.F., Friedman, M.D.Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, Berlin/New York, 1954

    MATH  Google Scholar 

  • Carrella, A., Brennan, M.J., Waters, T.P., Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristicJ. Sound Vib. 301, 678–689, 2007a

    Article  Google Scholar 

  • Carrella, A., Brennan, M.J., Waters, T.P., Optimization of a quasi-zero-stiffness isolatorJ. Mech. Sc. Tech. 21(6), 946–949, 2007b

    Article  Google Scholar 

  • Chen, S.H., Cheung, Y.K., An elliptic perturbation method for certain strongly nonlinear oscillatorsJ. Sound Vib. 192(2), 453–464, 1996

    Article  MathSciNet  Google Scholar 

  • Courant, R., Hilbert, D.Methods of Mathematical Physics, I and II, Wiley Interscience, New York, 1989

    Google Scholar 

  • Dermott, S.F., Murray, C.D., Nature of the Kirkwood gaps in the asteroid beltNature 301, 201– 205, 1983

    Article  Google Scholar 

  • DeSalvo, R., Passive, nonlinear, mechanical structures for seismic attenuationJ. Comp. Nonl. Dyn. 2, 290–298, 2007

    Article  Google Scholar 

  • Dodson, M.M., Rynne, B.P., Vickers, J.A.G., Averaging in multi-frequency systemsNonlinearity 2, 137–148, 1989

    Article  MATH  MathSciNet  Google Scholar 

  • Emaci, E., Nayfeh, T.A., Vakakis, A.F., Numerical and experimental study of nonlinear localization in a flexible structure with vibro-impactsZAMM 77(7), 527–541, 1997

    Article  MATH  Google Scholar 

  • Erlicher, S., Argoul, P., Modal identification of linear non-proportionally damped systems by wavelet transformsMech. Syst. Signal Proces. 21(3), 1386–1421, 2007

    Article  Google Scholar 

  • Fenichel, N., Persistence and smoothness of invariant manifolds for flowsIndiana Univ. Math. J. 21, 193–225, 1971

    Article  MATH  MathSciNet  Google Scholar 

  • Gendelman, O.V., Manevitch, L.I., Method of complex amplitudes: Harmonically excited Oscillator with Strong Cubic Nonlinearity, inProceedings of the ASME DETC03 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, Illinois, September 2–6, 2003

    Google Scholar 

  • Gildenburg, V.B., Semenov, V.E., Vvedenskii, N.V., Self-similar sharpening structures and traveling resonance fronts in nonlocal HF ionization processesPhysica D 152–153, 714–722, 2001

    Article  Google Scholar 

  • Guckenheimer, J., Holmes, P.Nonlinear Oscillations, Dynamical System, and Bifurcation of Vector Fields, Springer-Verlag, New York, 1983

    Google Scholar 

  • Guevara, M.R., Glass, L., Shrier, A., Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cellsScience 214(4527), 1350–1353, 1981

    Article  Google Scholar 

  • Hodges, C.H., Confinement of vibration by structural irregularityJ. Sound Vib. 82(3), 411–424, 1982

    Article  MathSciNet  Google Scholar 

  • Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysisProc. Royal Soc. London, Ser. A 454, 903–995, 1998a

    Article  MATH  MathSciNet  Google Scholar 

  • Huang, W., Shen, Z., Huang, N.E., Fung, Y.C., Engineering analysis of biological variables: an example of blood pressure over 1 dayProc. Nat. Acad. Sci. 95, 4816–4821, 1998b

    Article  Google Scholar 

  • Huang, N.E., Wu, M.C., Long, S.R., Shen, S.S.P., Qu, W., Gloersen, P., Fan, K.L., A confidence limit for the empirical mode decomposition and Hilbert spectral analysisProc. Royal Soc. London, Ser. A 459, 2317–2345, 2003

    Article  MATH  MathSciNet  Google Scholar 

  • Itin, A., Neishtadt, A., Vasiliev, A., Captures into resonance and scattering on resonance in the dynamics of a charged relativistic particle in magnetic field and electrostatic wavePhysica D 141, 281–296, 2000

    Article  MATH  MathSciNet  Google Scholar 

  • Jiang, D., Pierre, C., Shaw, S.W., The construction of nonlinear normal modes for systems with internal resonanceInt. J. Nonlinear Mech. 40, 729–746, 2005a

    Article  MATH  Google Scholar 

  • Jiang, D., Pierre, C., Shaw, S.W., Nonlinear normal modes for vibratory systems under harmonic excitationJ. Sound Vib. 288(4–5), 791–812, 2005b

    Article  Google Scholar 

  • Kahn, P.B., Zarmi, Y.Nonlinear Dynamics: Exploration through Normal Forms, J. Wiley & Sons, 1997

    Google Scholar 

  • Kath, W., Necessary conditions for sustained reentry roll resonanceSIAM J. Appl. Math. 43, 314– 324, 1983a

    Article  MATH  MathSciNet  Google Scholar 

  • Kath, W., Conditions for sustained resonance IISIAM J. Appl. Math. 43, 579–583, 1983b

    Article  MATH  MathSciNet  Google Scholar 

  • Kauderer, H.Nichtlineare Mechanik, Springer-Verlag, Berlin/New York, 1958

    MATH  Google Scholar 

  • Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.C., Past, present and future of nonlinear system identification in structural dynamicsMech. Syst. Signal Proces. 20, 505–592, 2006

    Article  Google Scholar 

  • Kerschen, G., Vakakis, A.F., Lee, Y.S., McFarland, D.M., Bergman, L.A., Toward a fundamental understanding of the Hilbert—Huang transform in nonlinear structural dynamics, inProceedings of the 24th International Modal Analysis Conference (IMAC), St-Louis, MO, 2006

    Google Scholar 

  • Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F., Nonlinear normal modes, Part I: A useful framework for the structural dynamicistMech. Syst. Sign. Proc., 2008a (submitted)

    Google Scholar 

  • Kerschen, G., Vakakis, A.F., Lee, Y.S., McFarland, D.M., Bergman, L.A., Toward a fundamental understanding of the Hilbert-Huang transform in nonlinear structural dynamicsJ. Vib. Control 14, 77–105, 2008b

    Article  MathSciNet  Google Scholar 

  • Kevorkian, J., Cole, J.D.Multiple Scale and Singular Perturbation Methods, Springer-Verlag, Berlin/New York, 1996

    MATH  Google Scholar 

  • King, M.E., Vakakis, A.F., An energy-based approach to computing nonlinear normal modes in undamped continuous systemsJ. Vib. Acoust. 116, 332–340, 1993

    Article  Google Scholar 

  • King, M.E., Vakakis, A.F., A method for studyng waves with spatially localized envelopes in a class of weakly nonlinear partial differential equationsWave Motion 19, 391–405, 1994

    Article  MATH  MathSciNet  Google Scholar 

  • King, M.E., Vakakis, A.F., Mode localization in a system of coupled flexible beams with geometric nonlinearitiesZAMM 75, 127–139, 1995a

    MATH  MathSciNet  Google Scholar 

  • King, M.E., Vakakis, A.F., A very complicated structure of resonances in a system with cyclic symmetryNonl. Dynam. 7, 85–104, 1995b

    MathSciNet  Google Scholar 

  • King, M.E., Vakakis, A.F., An energy-based approach to computing resonant nonlinear normal modesJ. Appl. Mech. 63, 810–819, 1996

    Article  MATH  MathSciNet  Google Scholar 

  • Koon, W., Lo, M., Marsden, J., Ross, S., Resonance and capture of Jupiter comets.Celest. Mech. Dyn. Astr. 81, 27–38, 2001

    Article  MATH  MathSciNet  Google Scholar 

  • Kosevitch, A.M., Kovalyov, A.S.Introduction to Nonlinear Dynamics, Naukova dumka, Kiev, 1989 [in Russian]

    Google Scholar 

  • Lakrad, F., Belhaq, M., Periodic solutions of strongly nonlinear oscillators by the multiple scales methodJ. Sound Vib. 258(4), 677–700, 2002

    Article  MathSciNet  Google Scholar 

  • Le, T.P., Argoul, P., Continuous wavelet tranform for modal identification using free decay responseJ. Sound Vib. 277, 73–100, 2004

    Article  Google Scholar 

  • Lee, C.-M., Goverdovskiy, V.N., Temnikov, A.I., Design of springs with ‘negative’ stiffness to improve vehicle driver vibration isolationJ. Sound Vib. 302, 865–874, 2007

    Article  Google Scholar 

  • Lichtenberg, A., Lieberman, M.Regular and Stochastic Motions, Springer-Verlag, Berlin/New York, 1983

    Google Scholar 

  • Lighthill, M.J.Higher Approximations in Aerodynamic Theory, Princeton University Press, Princeton, New Jersey, 1960

    MATH  Google Scholar 

  • Lochak, P., Meunier, C.Multi-phase Averaging for Classical Systems, Springer-Verlag, Berlin, 1988

    Google Scholar 

  • Lyapunov, A.The General Problem of the Stability of Motion, Princeton University Press, Princeton, New Jersey, 1947

    Google Scholar 

  • MacKay, R.S., Meiss, J.D. (Eds.)Hamiltonian Dynamical Systems, A Reprint Selection, Adam Hilger, Bristol and Philadelphia, 1987

    MATH  Google Scholar 

  • Manevitch, L.I., Complex representation of dynamics of coupled nonlinear oscillators, inMathematical Models of Non-Linear Excitations, Transfer Dynamics and Control in Condensed Systems and Other Media, L. Uvarova, A. Arinstein and A. Latyshev (Eds.), Kluwer Academic/Plenum Publishers, 1999

    Google Scholar 

  • Manevitch, L.I., The description of localized normal modes in a chain of nonlinear coupled oscil lators using complex variables, Nonl. Dyn. 25, 95–109, 2001

    Article  MATH  MathSciNet  Google Scholar 

  • Manevitch, L.I., Mikhlin, Yu.V., On periodic solutions close to rectilinear normal vibration modes, J. Appl. Math. Mech. (PMM) 36(6), 1051–1058, 1972

    Google Scholar 

  • Manevitch, L.I., Pinsky, M.A., On the use of symmetry when calculating nonlinear oscillations, Izv. AN SSSR, MTT 7(2), 43–46, 1972a

    Google Scholar 

  • Manevitch, L.I., Pinsky, M.A., On nonlinear normal vibrations in systems with two degrees of freedom, Prikl. Mech. 8(9), 83–90, 1972b

    Google Scholar 

  • Manevitch, L.I., Pervouchine, V.P., Transversal dynamics of one-dimensional chain on nonlinear asymmetric substrate, Meccanica 38, 669–676, 2003

    Article  MATH  Google Scholar 

  • Manevitch, L.I., Mikhlin, Yu.V., Pilipchuk, V.N., The Method of Normal Oscillations for Essentially Nonlinear Systems, Nauka, Moscow, 1989 [in Russian]

    Google Scholar 

  • Meirovitch, L., Elements of Vibration Analysis, McGraw Hill, New York, 1980

    Google Scholar 

  • Mendonça, J.T., Bingham, R., Shukla, P.K., Resonant quasiparticles in plasma turbulence, Phys. Rev. E. 68, 016406, 2003

    Article  Google Scholar 

  • Mikhlin, Yu.V., Resonance modes of near conservative nonlinear systems, J. Appl. Math. Mech. (PMM) 38(3), 425–429, 1974

    Article  MATH  Google Scholar 

  • Mikhlin, Yu.V., The joining of local expansions in the theory of nonlinear oscillations, J. Appl. Math. Mech. (PMM) 49, 738–743, 1985

    Article  MathSciNet  Google Scholar 

  • Morozov, A. D., Shilnikov, L. P., On nonconservative periodic systems close to two-dimensional Hamiltonian, J. Appl. Math. Mech. (PMM) 47(3), 327–334, 1984

    Article  MATH  MathSciNet  Google Scholar 

  • Moser, J.K., Periodic orbits near an equilibrium and a theorem, Comm. Pure Appl. Math. 29, 727– 747, 1976

    Article  MATH  Google Scholar 

  • Moser, J.K., Integrable Hamiltonian Systems and Spectral Theory, Coronet Books, Philadelphia, PA, 2003

    Google Scholar 

  • Nayfeh, A.H., The Method of Normal Forms, Wiley Interscience, New York, 1993

    Google Scholar 

  • Nayfeh, A.H., Nonlinear Interactions: Analytical, Computational and Experimental Methods, Wiley Interscience, New York, 2000

    MATH  Google Scholar 

  • Nayfeh, A.H., Mook, D.T., Nonlinear Oscillations, Wiley Interscience, New York, 1995

    Google Scholar 

  • Nayfeh, A.H., Nayfeh, S.A., Nonlinear normal modes of a continuous system with quadratic non-linearities, J. Vib. Acoust. 117, 199–205, 1993

    Article  Google Scholar 

  • Nayfeh, A.H., Chin, C., Nayfeh, A.H., On nonlinear normal modes of systems with internal resonance, J. Vib. Acoust. 118, 340–345, 1996

    Article  Google Scholar 

  • Neishtadt, A., Passage through a separatrix in a resonance problem with a slowly-varying parameter, J. Appl. Math. Mech. (PMM) 39, 621–632, 1975

    Article  MathSciNet  Google Scholar 

  • Neishtadt, A., Scattering by resonances, Cel. Mech. Dyn. Astr. 65, 1–20, 1997

    Article  MATH  MathSciNet  Google Scholar 

  • Neishtadt, A., On adiabatic invariance in two-frequency systems, in Hamiltonian Systems with Three or More Degrees of Freedom, NATO ASI Series C 533, Kluwer Academic Publishers, pp. 193–212, 1999

    Google Scholar 

  • Panagopoulos, P.N., Vakakis, A.F., Tsakirtzis, S., Transient resonant interactions of linear chains with essentially nonlinear end attachments leading to passive energy pumping, Int. J. Solids Str. 41(22–23), 6505–6528, 2004

    Article  MATH  Google Scholar 

  • Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.C., Nonlinear normal modes, Part II: Practical computation using numerical continuation techniques, Mech. Syst. Signal Proc., 2008 (submitted)

    Google Scholar 

  • Persival, I., Richards, D., Introduction to Dynamics, Cambridge University Press, Cambridge, UK, 1982

    Google Scholar 

  • Pesheck, E., Reduced-Order Modeling of Nonlinear Structural Systems Using Nonlinear Normal Modes and Invariant Manifolds, PhD Thesis, University of Michigan, Ann Arbor, MI

    Google Scholar 

  • Pesheck, E., Pierre, C., Shaw, S.W., A new Galerkin-based approach for accurate non-linear normal modes through invariant manifolds, J. Sound Vib. 249(5), 971–993, 2002

    Article  MathSciNet  Google Scholar 

  • Pierre, C., Dowell, E.H., Localization of vibrations by structural irregularity, J. Sound Vib. 114, 549–564, 1987

    Article  Google Scholar 

  • Pierre, C., Jiang, D., Shaw, S.W., Nonlinear normal modes and their application in structural dynamics, Math. Probl. Eng. 10847, 1–15, 2006

    Article  MathSciNet  Google Scholar 

  • Pilipchuk, V.N., Transient mode localization in coupled strongly nonlinear exactly solvable oscillators, Nonl. Dyn. 51, 245–258, 2008

    Article  MathSciNet  MATH  Google Scholar 

  • Quinn, D., Resonance capture in a three degree-of-freedom mechanical system, Nonl. Dyn. 14, 309–333, 1997a

    Article  MATH  MathSciNet  Google Scholar 

  • Quinn, D., Transition to escape in a system of coupled oscillators, Int. J. Nonl. Mech. 32, 1193– 1206, 1997b

    Article  MATH  MathSciNet  Google Scholar 

  • Rand, R.H., Nonlinear normal modes in two-degree-of-freedom systems, J. Appl. Mech. 38, 561, 1971

    Google Scholar 

  • Rand, R.H., A direct method for nonlinear normal modes, Int. J. Nonlinear Mech. 9, 363–368, 1974

    Article  MATH  Google Scholar 

  • Rilling, G., Flandrin, P., Gonçalvès, P., On empirical mode decomposition and its algorithms, in IEEE-Eurasip Workshop on Nonlinear Signal and Image Processing (NSIP-03), Grado, Italy, June 2003

    Google Scholar 

  • Rosenberg, R.M., On nonlinear vibrations of systems with many degrees of freedom, Adv. Appl. Mech. 9, 155–242, 1966

    Article  Google Scholar 

  • Sanders, J., Verhulst, F., Averaging Methods in Nonlinear Dynamical Systems, Springer-Verlag, New York, 1985

    MATH  Google Scholar 

  • Scott, A.S., Lomdahl, P.S., Eilbeck, J.C., Between the local-mode and normal-mode limits, Chem. Phys. Lett. 113, 29–36, 1985

    Article  Google Scholar 

  • Shaw, S.W., Pierre, C., Nonlinear normal modes and invariant manifolds, J. Sound Vib. 150, 170– 173, 1991

    Article  MathSciNet  Google Scholar 

  • Shaw, S.W., Pierre, C., Normal modes of vibration for nonlinear vibratory systems, J. Sound Vib. 164, 85–124, 1993

    Article  MATH  MathSciNet  Google Scholar 

  • Touzé, C., Amabili, M., Non-linear normal modes for damped geometrically non-linear systems: Application to reduced-order modeling of harmonically forced structures, J. Sound Vib. 298(4– 5), 958–981, 2006

    Article  Google Scholar 

  • Touzé, C., Thomas, O., Chaigne, A., Hardening / softening behaviour in nonlinear oscillations of structural systems using nonlinear normal modes, J. Sound Vib. 273, 77–101, 2004

    Article  Google Scholar 

  • Touzé, C., Amabili, M., Thomas, O., Camier, C., Reduction of geometrically nonlinear models of shell vibrations including in-plane inertia, in Euromech Colloquium 483 on Geometrically Nonlinear Vibrations of Structures, July 9–11, FEUP, Porto, Portugal, 2007a

    Google Scholar 

  • Touzé, C., Amabili, M., Thomas, O., Reduced-order models for large-amplitude vibrations of shells including in-plane inertia, Preprint, 2007b

    Google Scholar 

  • Tsakirtzis S., Passive Targeted Energy Transfers From Elastic Continua to Essentially Nonlinear Attachments for Suppressing Dynamical Disturbances, PhD Thesis, National Technical University of Athens, Athens, Greece, 2006

    Google Scholar 

  • Vakakis, A.F., Fundamental and subharmonic resonances in a system with a 1–1 internal resonance, Nonl. Dyn. 3, 123–143, 1992

    Article  Google Scholar 

  • Vakakis, A.F., Passive spatial confinement of impulsive responses in coupled nonlinear beams, AIAA J. 32, 1902–1910, 1994

    Article  MATH  Google Scholar 

  • Vakakis, A.F., Nonlinear mode localization in systems governed by partial differential equations, Appl. Mech. Rev. (Special Issue on ‘Localization and the Effects of Irregularities in Structures’, H. Benaroya, Ed.), 49(2), 87–99, 1996

    Google Scholar 

  • Vakakis, A.F., Nonlinear normal modes and their applications in vibration theory: An overview, Mech. Sys. Signal Proc. 11(1), 3–22, 1997

    Article  MathSciNet  Google Scholar 

  • Vakakis, A.F. (Ed.), Normal Modes and Localization in Nonlinear Systems, Kluwer Academic Publishers, 2002 [also, special issue o Nonlinear Dynamics 25(1–3), 1–292, 2001]

    Google Scholar 

  • Vakakis, A.F., Gendelman, O., Energy pumping in nonlinear mechanical oscillators: Part II – Resonance capture, J. Appl. Mech. 68, 42–48, 2001

    Article  MATH  MathSciNet  Google Scholar 

  • Vakakis, A.F., King, M.E., Nonlinear wave transmission in a mono-coupled elastic periodic system, J. Acoust. Soc. Am. 98, 1534–1546, 1995

    Article  Google Scholar 

  • Vakakis, A.F., Rand, R.H., Normal modes and global dynamics of a two-degree-of-freedom non linear system — I. Low energies, Int. J. Nonlinear Mech. 27(5), 861–874, 1992a

    Article  MATH  MathSciNet  Google Scholar 

  • Vakakis, A.F., Rand, R.H., Normal modes and global dynamics of a two-degree-of-freedom nonlinear system — II. High energies, Int. J. Nonlinear Mech. 27(5), 875–888, 1992b

    Article  MATH  MathSciNet  Google Scholar 

  • Vakakis, A.F., Nayfeh, A.H., King, M.E., A multiple scales analysis of nonlinear, localized modes in a cyclic periodic system, J. Appl. Mech. 60, 388–397, 1993

    Article  MATH  MathSciNet  Google Scholar 

  • Vakakis, A.F., King, M.E., Pearlstein, A.J., Forced localization in a periodic chain of nonlinear oscillators, Int. J. Nonlinear Mech. 29(3), 429–447, 1994

    Article  MATH  Google Scholar 

  • Vakakis, A.F., Manevitch, L.I., Mikhlin, Yu.V., Pilipchuk, V., Zevin, A.A., Normal Modes and Localization in Nonlinear Systems, J. Wiley & Sons, New York, 1996

    MATH  Google Scholar 

  • Vakakis, A.F., Manevitch, L.I., Gendelman, A., Bergman, L.A., Dynamics of linear discrete systems connected to local essentially nonlinear attachments, J. Sound Vib. 264, 559–577, 2003

    Article  Google Scholar 

  • Veerman, P., Holmes, P., The existence of arbitrarily many distinct periodic orbits in a two degree-of-freedom Hamiltonian system, Physica D 14, 177–192, 1985

    Article  MATH  MathSciNet  Google Scholar 

  • Veerman, P., Holmes, P., Resonance bands in a two-degree-of-freedom Hamiltonian system, Phys-ica D 20, 413–422, 1986

    MATH  MathSciNet  Google Scholar 

  • Verhulst, F., Methods and Applications of Singular Perturbations, Springer-Verlag, Berlin/New York, 2005

    MATH  Google Scholar 

  • Virgin, L.N., Santillan, S.T., Plaut, R.H., Vibration isolation using extreme geometric nonlinearity, in Euromech Colloquium 483 on Geometrically Nonlinear Vibrations of Structures, July 9–11, FEUP, Porto, Portugal, 2007

    Google Scholar 

  • Weinstein, A., Normal modes for nonlinear Hamiltonian systems, Inv. Math. 20, 47–57, 1973

    Article  MATH  Google Scholar 

  • Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 1990

    MATH  Google Scholar 

  • Yang, C.H., Zhu, S.M., Chen, S.H., A modified elliptic Lindstedt—Poincaré method for certain strongly nonlinear oscillators, J. Sound Vib. 273, 921–932, 2004

    Article  MathSciNet  Google Scholar 

  • Yin, H.P., Duhamel, D., Argoul, P., Natural frequencies and damping estimation using wavelet transform of a frequency response function, J. Sound Vib. 271(3–5), 999–1014, 2004

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, B.V

About this chapter

Cite this chapter

(2008). Preliminary Concepts, Methodologies and Techniques. In: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Solid Mechanics and Its Applications, vol 156. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9130-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9130-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9125-4

  • Online ISBN: 978-1-4020-9130-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics