Preliminary Concepts, Methodologies and Techniques

Part of the Solid Mechanics and Its Applications book series (SMIA, volume 156)

As mentioned in the Introduction (Chapter 1), the study of targeted energy transfer (TET) in strongly nonlinear and non-conservative oscillators poses some distinct technical challenges, and dictates the use of concepts, formulations, analytical methodologies and computational techniques from different fields of applied mathematics and engineering, such as dynamical systems and bifurcation theory, theory of asymptotic approximations, numerical signal processing, and experimental dynamics. Therefore, before we initiate our study of the nonlinear dynamics of TET, it is appropriate to provide first some background information related to certain key concepts and methodologies that will be applied in the work that follows.

Specifically, we will briefly discuss the concepts of nonlinear normal mode (NNM) and nonlinear mode localization in discrete and continuous oscillators, and the occurence of nonlinear internal resonances, transient resonance captures (TRCs) and sustained resonance captures (SRCs) in undamped or damped, forced or unforced systems of coupled oscillators. These concepts will provide us with the necessary theoretical framework to base our theoretical study of the dynamics of TET; moreover, using these concepts we will be able to identify, interprete, and place into the right context complex nonlinear dynamical phenomena related to TET.


Wavelet Transform Invariant Manifold Empirical Mode Decomposition Internal Resonance Nonlinear Energy Sink 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, P.W., Absence of diffusion in certain random latticesPhys. Rev. 109, 1492–1505, 1958CrossRefGoogle Scholar
  2. Andrianov, I.V., Asymptotic construction of nonlinear normal modes for continuous systemsNonl. Dyn. 51, 99–109, 2008MathSciNetCrossRefMATHGoogle Scholar
  3. Andrianov, I.V., Awrejcewicz, J., Barantsev, R.G., Asymptotic approaches in mechanics: New parameters and proceduresAppl. Mech. Rev. 56(1), 87–110, 2003CrossRefGoogle Scholar
  4. Argoul, P., Le, T.P., Instantaneous indicators of structural behavior based on the continuous Cauchy wavelet analysisMech. Syst. Signal Proces. 17(1), 243–250, 2003CrossRefGoogle Scholar
  5. Arnold, V.I. (Ed.)Dynamical Systems III, Encyclopaedia of Mathematical Sciences, Vol. 3, Springer-Verlag, Berlin, 1988Google Scholar
  6. Aubrecht, J., Vakakis, A.F., Localized and non-localized nonlinear normal modes in a multi-span beam with geometric nonlinearitiesJ. Vib. Acoust. 118(4), 533–542, 1996CrossRefGoogle Scholar
  7. Aubrecht, J., Vakakis, A.F., Tsao, T.C., Bentsman, J., Experimental study of nonlinear transient motion confinement in a system of coupled beamsJ. Sound Vib. 195(4), 629–648, 1996CrossRefGoogle Scholar
  8. Bakhtin, V.I., Averaging in multi-frequency systemsFunct. An. Appl. 2083–88 (English translation fromFunkts. Anal. Prilozh. 20, 1–7, 1986 [in Russian])MATHMathSciNetCrossRefGoogle Scholar
  9. Belhaq, M., Lakrad, F., The elliptic multiple scales method for a class of autonomous strongly nonlinear oscillatorsJ. Sound Vib. 234(3), 547–553, 2000MathSciNetCrossRefGoogle Scholar
  10. Bellizzi, S., Bouc, R., A new formulation for the existence and calculation of nonlinear normal modesJ. Sound Vib. 287, 545–569, 2005MathSciNetGoogle Scholar
  11. Belokonov, V., Zabolotnov, M., Estimation of the probability of capture into a resonance mode of motion for a spacecraft during its descent in the atmosphere.Cosmic Res. 40, 467–478, 2002 (translated fromKosmicheskie Issledovaniya 40, 503–514, 2002)CrossRefGoogle Scholar
  12. Boivin, N., Pierre, C., Shaw, S.W., Nonlinear modal analysis of structural systems featuring internal resonancesJ. Sound Vib. 182, 336–341, 1995CrossRefGoogle Scholar
  13. Bosley, D., Kevorkian, J., Adiabatic invariance and transient resonance in very slowly varying oscillatory Hamiltonian systemsSIAM J. Appl. Math. 52, 494–527, 1992MATHMathSciNetCrossRefGoogle Scholar
  14. Burns, T., Jones, C., A mechanism for capture into resonancePhysica D 69, 85–106, 1993MATHMathSciNetCrossRefGoogle Scholar
  15. Byrd, P.F., Friedman, M.D.Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, Berlin/New York, 1954MATHGoogle Scholar
  16. Carrella, A., Brennan, M.J., Waters, T.P., Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristicJ. Sound Vib. 301, 678–689, 2007aCrossRefGoogle Scholar
  17. Carrella, A., Brennan, M.J., Waters, T.P., Optimization of a quasi-zero-stiffness isolatorJ. Mech. Sc. Tech. 21(6), 946–949, 2007bCrossRefGoogle Scholar
  18. Chen, S.H., Cheung, Y.K., An elliptic perturbation method for certain strongly nonlinear oscillatorsJ. Sound Vib. 192(2), 453–464, 1996MathSciNetCrossRefGoogle Scholar
  19. Courant, R., Hilbert, D.Methods of Mathematical Physics, I and II, Wiley Interscience, New York, 1989Google Scholar
  20. Dermott, S.F., Murray, C.D., Nature of the Kirkwood gaps in the asteroid beltNature 301, 201– 205, 1983CrossRefGoogle Scholar
  21. DeSalvo, R., Passive, nonlinear, mechanical structures for seismic attenuationJ. Comp. Nonl. Dyn. 2, 290–298, 2007CrossRefGoogle Scholar
  22. Dodson, M.M., Rynne, B.P., Vickers, J.A.G., Averaging in multi-frequency systemsNonlinearity 2, 137–148, 1989MATHMathSciNetCrossRefGoogle Scholar
  23. Emaci, E., Nayfeh, T.A., Vakakis, A.F., Numerical and experimental study of nonlinear localization in a flexible structure with vibro-impactsZAMM 77(7), 527–541, 1997MATHCrossRefGoogle Scholar
  24. Erlicher, S., Argoul, P., Modal identification of linear non-proportionally damped systems by wavelet transformsMech. Syst. Signal Proces. 21(3), 1386–1421, 2007CrossRefGoogle Scholar
  25. Fenichel, N., Persistence and smoothness of invariant manifolds for flowsIndiana Univ. Math. J. 21, 193–225, 1971MATHMathSciNetCrossRefGoogle Scholar
  26. Gendelman, O.V., Manevitch, L.I., Method of complex amplitudes: Harmonically excited Oscillator with Strong Cubic Nonlinearity, inProceedings of the ASME DETC03 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, Illinois, September 2–6, 2003Google Scholar
  27. Gildenburg, V.B., Semenov, V.E., Vvedenskii, N.V., Self-similar sharpening structures and traveling resonance fronts in nonlocal HF ionization processesPhysica D 152–153, 714–722, 2001CrossRefGoogle Scholar
  28. Guckenheimer, J., Holmes, P.Nonlinear Oscillations, Dynamical System, and Bifurcation of Vector Fields, Springer-Verlag, New York, 1983Google Scholar
  29. Guevara, M.R., Glass, L., Shrier, A., Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cellsScience 214(4527), 1350–1353, 1981CrossRefGoogle Scholar
  30. Hodges, C.H., Confinement of vibration by structural irregularityJ. Sound Vib. 82(3), 411–424, 1982MathSciNetCrossRefGoogle Scholar
  31. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysisProc. Royal Soc. London, Ser. A 454, 903–995, 1998aMATHMathSciNetCrossRefGoogle Scholar
  32. Huang, W., Shen, Z., Huang, N.E., Fung, Y.C., Engineering analysis of biological variables: an example of blood pressure over 1 dayProc. Nat. Acad. Sci. 95, 4816–4821, 1998bCrossRefGoogle Scholar
  33. Huang, N.E., Wu, M.C., Long, S.R., Shen, S.S.P., Qu, W., Gloersen, P., Fan, K.L., A confidence limit for the empirical mode decomposition and Hilbert spectral analysisProc. Royal Soc. London, Ser. A 459, 2317–2345, 2003MATHMathSciNetCrossRefGoogle Scholar
  34. Itin, A., Neishtadt, A., Vasiliev, A., Captures into resonance and scattering on resonance in the dynamics of a charged relativistic particle in magnetic field and electrostatic wavePhysica D 141, 281–296, 2000MATHMathSciNetCrossRefGoogle Scholar
  35. Jiang, D., Pierre, C., Shaw, S.W., The construction of nonlinear normal modes for systems with internal resonanceInt. J. Nonlinear Mech. 40, 729–746, 2005aMATHCrossRefGoogle Scholar
  36. Jiang, D., Pierre, C., Shaw, S.W., Nonlinear normal modes for vibratory systems under harmonic excitationJ. Sound Vib. 288(4–5), 791–812, 2005bCrossRefGoogle Scholar
  37. Kahn, P.B., Zarmi, Y.Nonlinear Dynamics: Exploration through Normal Forms, J. Wiley & Sons, 1997Google Scholar
  38. Kath, W., Necessary conditions for sustained reentry roll resonanceSIAM J. Appl. Math. 43, 314– 324, 1983aMATHMathSciNetCrossRefGoogle Scholar
  39. Kath, W., Conditions for sustained resonance IISIAM J. Appl. Math. 43, 579–583, 1983bMATHMathSciNetCrossRefGoogle Scholar
  40. Kauderer, H.Nichtlineare Mechanik, Springer-Verlag, Berlin/New York, 1958MATHGoogle Scholar
  41. Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.C., Past, present and future of nonlinear system identification in structural dynamicsMech. Syst. Signal Proces. 20, 505–592, 2006CrossRefGoogle Scholar
  42. Kerschen, G., Vakakis, A.F., Lee, Y.S., McFarland, D.M., Bergman, L.A., Toward a fundamental understanding of the Hilbert—Huang transform in nonlinear structural dynamics, inProceedings of the 24th International Modal Analysis Conference (IMAC), St-Louis, MO, 2006Google Scholar
  43. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F., Nonlinear normal modes, Part I: A useful framework for the structural dynamicistMech. Syst. Sign. Proc., 2008a (submitted)Google Scholar
  44. Kerschen, G., Vakakis, A.F., Lee, Y.S., McFarland, D.M., Bergman, L.A., Toward a fundamental understanding of the Hilbert-Huang transform in nonlinear structural dynamicsJ. Vib. Control 14, 77–105, 2008bMathSciNetCrossRefGoogle Scholar
  45. Kevorkian, J., Cole, J.D.Multiple Scale and Singular Perturbation Methods, Springer-Verlag, Berlin/New York, 1996MATHGoogle Scholar
  46. King, M.E., Vakakis, A.F., An energy-based approach to computing nonlinear normal modes in undamped continuous systemsJ. Vib. Acoust. 116, 332–340, 1993CrossRefGoogle Scholar
  47. King, M.E., Vakakis, A.F., A method for studyng waves with spatially localized envelopes in a class of weakly nonlinear partial differential equationsWave Motion 19, 391–405, 1994MATHMathSciNetCrossRefGoogle Scholar
  48. King, M.E., Vakakis, A.F., Mode localization in a system of coupled flexible beams with geometric nonlinearitiesZAMM 75, 127–139, 1995aMATHMathSciNetGoogle Scholar
  49. King, M.E., Vakakis, A.F., A very complicated structure of resonances in a system with cyclic symmetryNonl. Dynam. 7, 85–104, 1995bMathSciNetGoogle Scholar
  50. King, M.E., Vakakis, A.F., An energy-based approach to computing resonant nonlinear normal modesJ. Appl. Mech. 63, 810–819, 1996MATHMathSciNetCrossRefGoogle Scholar
  51. Koon, W., Lo, M., Marsden, J., Ross, S., Resonance and capture of Jupiter comets.Celest. Mech. Dyn. Astr. 81, 27–38, 2001MATHMathSciNetCrossRefGoogle Scholar
  52. Kosevitch, A.M., Kovalyov, A.S.Introduction to Nonlinear Dynamics, Naukova dumka, Kiev, 1989 [in Russian]Google Scholar
  53. Lakrad, F., Belhaq, M., Periodic solutions of strongly nonlinear oscillators by the multiple scales methodJ. Sound Vib. 258(4), 677–700, 2002MathSciNetCrossRefGoogle Scholar
  54. Le, T.P., Argoul, P., Continuous wavelet tranform for modal identification using free decay responseJ. Sound Vib. 277, 73–100, 2004CrossRefGoogle Scholar
  55. Lee, C.-M., Goverdovskiy, V.N., Temnikov, A.I., Design of springs with ‘negative’ stiffness to improve vehicle driver vibration isolationJ. Sound Vib. 302, 865–874, 2007CrossRefGoogle Scholar
  56. Lichtenberg, A., Lieberman, M.Regular and Stochastic Motions, Springer-Verlag, Berlin/New York, 1983Google Scholar
  57. Lighthill, M.J.Higher Approximations in Aerodynamic Theory, Princeton University Press, Princeton, New Jersey, 1960MATHGoogle Scholar
  58. Lochak, P., Meunier, C.Multi-phase Averaging for Classical Systems, Springer-Verlag, Berlin, 1988Google Scholar
  59. Lyapunov, A.The General Problem of the Stability of Motion, Princeton University Press, Princeton, New Jersey, 1947Google Scholar
  60. MacKay, R.S., Meiss, J.D. (Eds.)Hamiltonian Dynamical Systems, A Reprint Selection, Adam Hilger, Bristol and Philadelphia, 1987MATHGoogle Scholar
  61. Manevitch, L.I., Complex representation of dynamics of coupled nonlinear oscillators, inMathematical Models of Non-Linear Excitations, Transfer Dynamics and Control in Condensed Systems and Other Media, L. Uvarova, A. Arinstein and A. Latyshev (Eds.), Kluwer Academic/Plenum Publishers, 1999Google Scholar
  62. Manevitch, L.I., The description of localized normal modes in a chain of nonlinear coupled oscil lators using complex variables, Nonl. Dyn. 25, 95–109, 2001MATHMathSciNetCrossRefGoogle Scholar
  63. Manevitch, L.I., Mikhlin, Yu.V., On periodic solutions close to rectilinear normal vibration modes, J. Appl. Math. Mech. (PMM) 36(6), 1051–1058, 1972Google Scholar
  64. Manevitch, L.I., Pinsky, M.A., On the use of symmetry when calculating nonlinear oscillations, Izv. AN SSSR, MTT 7(2), 43–46, 1972aGoogle Scholar
  65. Manevitch, L.I., Pinsky, M.A., On nonlinear normal vibrations in systems with two degrees of freedom, Prikl. Mech. 8(9), 83–90, 1972bGoogle Scholar
  66. Manevitch, L.I., Pervouchine, V.P., Transversal dynamics of one-dimensional chain on nonlinear asymmetric substrate, Meccanica 38, 669–676, 2003MATHCrossRefGoogle Scholar
  67. Manevitch, L.I., Mikhlin, Yu.V., Pilipchuk, V.N., The Method of Normal Oscillations for Essentially Nonlinear Systems, Nauka, Moscow, 1989 [in Russian]Google Scholar
  68. Meirovitch, L., Elements of Vibration Analysis, McGraw Hill, New York, 1980Google Scholar
  69. Mendonça, J.T., Bingham, R., Shukla, P.K., Resonant quasiparticles in plasma turbulence, Phys. Rev. E. 68, 016406, 2003CrossRefGoogle Scholar
  70. Mikhlin, Yu.V., Resonance modes of near conservative nonlinear systems, J. Appl. Math. Mech. (PMM) 38(3), 425–429, 1974MATHCrossRefGoogle Scholar
  71. Mikhlin, Yu.V., The joining of local expansions in the theory of nonlinear oscillations, J. Appl. Math. Mech. (PMM) 49, 738–743, 1985MathSciNetCrossRefGoogle Scholar
  72. Morozov, A. D., Shilnikov, L. P., On nonconservative periodic systems close to two-dimensional Hamiltonian, J. Appl. Math. Mech. (PMM) 47(3), 327–334, 1984MATHMathSciNetCrossRefGoogle Scholar
  73. Moser, J.K., Periodic orbits near an equilibrium and a theorem, Comm. Pure Appl. Math. 29, 727– 747, 1976MATHCrossRefGoogle Scholar
  74. Moser, J.K., Integrable Hamiltonian Systems and Spectral Theory, Coronet Books, Philadelphia, PA, 2003Google Scholar
  75. Nayfeh, A.H., The Method of Normal Forms, Wiley Interscience, New York, 1993Google Scholar
  76. Nayfeh, A.H., Nonlinear Interactions: Analytical, Computational and Experimental Methods, Wiley Interscience, New York, 2000MATHGoogle Scholar
  77. Nayfeh, A.H., Mook, D.T., Nonlinear Oscillations, Wiley Interscience, New York, 1995Google Scholar
  78. Nayfeh, A.H., Nayfeh, S.A., Nonlinear normal modes of a continuous system with quadratic non-linearities, J. Vib. Acoust. 117, 199–205, 1993CrossRefGoogle Scholar
  79. Nayfeh, A.H., Chin, C., Nayfeh, A.H., On nonlinear normal modes of systems with internal resonance, J. Vib. Acoust. 118, 340–345, 1996CrossRefGoogle Scholar
  80. Neishtadt, A., Passage through a separatrix in a resonance problem with a slowly-varying parameter, J. Appl. Math. Mech. (PMM) 39, 621–632, 1975MathSciNetCrossRefGoogle Scholar
  81. Neishtadt, A., Scattering by resonances, Cel. Mech. Dyn. Astr. 65, 1–20, 1997MATHMathSciNetCrossRefGoogle Scholar
  82. Neishtadt, A., On adiabatic invariance in two-frequency systems, in Hamiltonian Systems with Three or More Degrees of Freedom, NATO ASI Series C 533, Kluwer Academic Publishers, pp. 193–212, 1999Google Scholar
  83. Panagopoulos, P.N., Vakakis, A.F., Tsakirtzis, S., Transient resonant interactions of linear chains with essentially nonlinear end attachments leading to passive energy pumping, Int. J. Solids Str. 41(22–23), 6505–6528, 2004MATHCrossRefGoogle Scholar
  84. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.C., Nonlinear normal modes, Part II: Practical computation using numerical continuation techniques, Mech. Syst. Signal Proc., 2008 (submitted)Google Scholar
  85. Persival, I., Richards, D., Introduction to Dynamics, Cambridge University Press, Cambridge, UK, 1982Google Scholar
  86. Pesheck, E., Reduced-Order Modeling of Nonlinear Structural Systems Using Nonlinear Normal Modes and Invariant Manifolds, PhD Thesis, University of Michigan, Ann Arbor, MIGoogle Scholar
  87. Pesheck, E., Pierre, C., Shaw, S.W., A new Galerkin-based approach for accurate non-linear normal modes through invariant manifolds, J. Sound Vib. 249(5), 971–993, 2002MathSciNetCrossRefGoogle Scholar
  88. Pierre, C., Dowell, E.H., Localization of vibrations by structural irregularity, J. Sound Vib. 114, 549–564, 1987CrossRefGoogle Scholar
  89. Pierre, C., Jiang, D., Shaw, S.W., Nonlinear normal modes and their application in structural dynamics, Math. Probl. Eng. 10847, 1–15, 2006MathSciNetCrossRefGoogle Scholar
  90. Pilipchuk, V.N., Transient mode localization in coupled strongly nonlinear exactly solvable oscillators, Nonl. Dyn. 51, 245–258, 2008MathSciNetCrossRefMATHGoogle Scholar
  91. Quinn, D., Resonance capture in a three degree-of-freedom mechanical system, Nonl. Dyn. 14, 309–333, 1997aMATHMathSciNetCrossRefGoogle Scholar
  92. Quinn, D., Transition to escape in a system of coupled oscillators, Int. J. Nonl. Mech. 32, 1193– 1206, 1997bMATHMathSciNetCrossRefGoogle Scholar
  93. Rand, R.H., Nonlinear normal modes in two-degree-of-freedom systems, J. Appl. Mech. 38, 561, 1971Google Scholar
  94. Rand, R.H., A direct method for nonlinear normal modes, Int. J. Nonlinear Mech. 9, 363–368, 1974MATHCrossRefGoogle Scholar
  95. Rilling, G., Flandrin, P., Gonçalvès, P., On empirical mode decomposition and its algorithms, in IEEE-Eurasip Workshop on Nonlinear Signal and Image Processing (NSIP-03), Grado, Italy, June 2003Google Scholar
  96. Rosenberg, R.M., On nonlinear vibrations of systems with many degrees of freedom, Adv. Appl. Mech. 9, 155–242, 1966CrossRefGoogle Scholar
  97. Sanders, J., Verhulst, F., Averaging Methods in Nonlinear Dynamical Systems, Springer-Verlag, New York, 1985MATHGoogle Scholar
  98. Scott, A.S., Lomdahl, P.S., Eilbeck, J.C., Between the local-mode and normal-mode limits, Chem. Phys. Lett. 113, 29–36, 1985CrossRefGoogle Scholar
  99. Shaw, S.W., Pierre, C., Nonlinear normal modes and invariant manifolds, J. Sound Vib. 150, 170– 173, 1991MathSciNetCrossRefGoogle Scholar
  100. Shaw, S.W., Pierre, C., Normal modes of vibration for nonlinear vibratory systems, J. Sound Vib. 164, 85–124, 1993MATHMathSciNetCrossRefGoogle Scholar
  101. Touzé, C., Amabili, M., Non-linear normal modes for damped geometrically non-linear systems: Application to reduced-order modeling of harmonically forced structures, J. Sound Vib. 298(4– 5), 958–981, 2006CrossRefGoogle Scholar
  102. Touzé, C., Thomas, O., Chaigne, A., Hardening / softening behaviour in nonlinear oscillations of structural systems using nonlinear normal modes, J. Sound Vib. 273, 77–101, 2004CrossRefGoogle Scholar
  103. Touzé, C., Amabili, M., Thomas, O., Camier, C., Reduction of geometrically nonlinear models of shell vibrations including in-plane inertia, in Euromech Colloquium 483 on Geometrically Nonlinear Vibrations of Structures, July 9–11, FEUP, Porto, Portugal, 2007aGoogle Scholar
  104. Touzé, C., Amabili, M., Thomas, O., Reduced-order models for large-amplitude vibrations of shells including in-plane inertia, Preprint, 2007bGoogle Scholar
  105. Tsakirtzis S., Passive Targeted Energy Transfers From Elastic Continua to Essentially Nonlinear Attachments for Suppressing Dynamical Disturbances, PhD Thesis, National Technical University of Athens, Athens, Greece, 2006Google Scholar
  106. Vakakis, A.F., Fundamental and subharmonic resonances in a system with a 1–1 internal resonance, Nonl. Dyn. 3, 123–143, 1992CrossRefGoogle Scholar
  107. Vakakis, A.F., Passive spatial confinement of impulsive responses in coupled nonlinear beams, AIAA J. 32, 1902–1910, 1994MATHCrossRefGoogle Scholar
  108. Vakakis, A.F., Nonlinear mode localization in systems governed by partial differential equations, Appl. Mech. Rev. (Special Issue on ‘Localization and the Effects of Irregularities in Structures’, H. Benaroya, Ed.), 49(2), 87–99, 1996Google Scholar
  109. Vakakis, A.F., Nonlinear normal modes and their applications in vibration theory: An overview, Mech. Sys. Signal Proc. 11(1), 3–22, 1997MathSciNetCrossRefGoogle Scholar
  110. Vakakis, A.F. (Ed.), Normal Modes and Localization in Nonlinear Systems, Kluwer Academic Publishers, 2002 [also, special issue o Nonlinear Dynamics 25(1–3), 1–292, 2001]Google Scholar
  111. Vakakis, A.F., Gendelman, O., Energy pumping in nonlinear mechanical oscillators: Part II – Resonance capture, J. Appl. Mech. 68, 42–48, 2001MATHMathSciNetCrossRefGoogle Scholar
  112. Vakakis, A.F., King, M.E., Nonlinear wave transmission in a mono-coupled elastic periodic system, J. Acoust. Soc. Am. 98, 1534–1546, 1995CrossRefGoogle Scholar
  113. Vakakis, A.F., Rand, R.H., Normal modes and global dynamics of a two-degree-of-freedom non linear system — I. Low energies, Int. J. Nonlinear Mech. 27(5), 861–874, 1992aMATHMathSciNetCrossRefGoogle Scholar
  114. Vakakis, A.F., Rand, R.H., Normal modes and global dynamics of a two-degree-of-freedom nonlinear system — II. High energies, Int. J. Nonlinear Mech. 27(5), 875–888, 1992bMATHMathSciNetCrossRefGoogle Scholar
  115. Vakakis, A.F., Nayfeh, A.H., King, M.E., A multiple scales analysis of nonlinear, localized modes in a cyclic periodic system, J. Appl. Mech. 60, 388–397, 1993MATHMathSciNetCrossRefGoogle Scholar
  116. Vakakis, A.F., King, M.E., Pearlstein, A.J., Forced localization in a periodic chain of nonlinear oscillators, Int. J. Nonlinear Mech. 29(3), 429–447, 1994MATHCrossRefGoogle Scholar
  117. Vakakis, A.F., Manevitch, L.I., Mikhlin, Yu.V., Pilipchuk, V., Zevin, A.A., Normal Modes and Localization in Nonlinear Systems, J. Wiley & Sons, New York, 1996MATHGoogle Scholar
  118. Vakakis, A.F., Manevitch, L.I., Gendelman, A., Bergman, L.A., Dynamics of linear discrete systems connected to local essentially nonlinear attachments, J. Sound Vib. 264, 559–577, 2003CrossRefGoogle Scholar
  119. Veerman, P., Holmes, P., The existence of arbitrarily many distinct periodic orbits in a two degree-of-freedom Hamiltonian system, Physica D 14, 177–192, 1985MATHMathSciNetCrossRefGoogle Scholar
  120. Veerman, P., Holmes, P., Resonance bands in a two-degree-of-freedom Hamiltonian system, Phys-ica D 20, 413–422, 1986MATHMathSciNetGoogle Scholar
  121. Verhulst, F., Methods and Applications of Singular Perturbations, Springer-Verlag, Berlin/New York, 2005MATHGoogle Scholar
  122. Virgin, L.N., Santillan, S.T., Plaut, R.H., Vibration isolation using extreme geometric nonlinearity, in Euromech Colloquium 483 on Geometrically Nonlinear Vibrations of Structures, July 9–11, FEUP, Porto, Portugal, 2007Google Scholar
  123. Weinstein, A., Normal modes for nonlinear Hamiltonian systems, Inv. Math. 20, 47–57, 1973MATHCrossRefGoogle Scholar
  124. Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 1990MATHGoogle Scholar
  125. Yang, C.H., Zhu, S.M., Chen, S.H., A modified elliptic Lindstedt—Poincaré method for certain strongly nonlinear oscillators, J. Sound Vib. 273, 921–932, 2004MathSciNetCrossRefGoogle Scholar
  126. Yin, H.P., Duhamel, D., Argoul, P., Natural frequencies and damping estimation using wavelet transform of a frequency response function, J. Sound Vib. 271(3–5), 999–1014, 2004CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V 2008

Personalised recommendations