Skip to main content

Assessment of Critical Levels of Atmospheric Ammonia for Lichen Diversity in Cork-Oak Woodland, Portugal

  • Chapter
Atmospheric Ammonia

The effect of atmospheric ammonia on ecosystems has been the subject of ongoing research. Its adverse effects as an air pollutant are well characterised, and may be even more widespread than previously thought (see Aber et al. 2003; Erisman et al. 2003; Krupa 2003; Purvis et al. 2003). The most important sources of NH3 in Europe are agricultural activities, mainly crop fertilization and cattle management (Galloway et al. 2003; EPER 2004). Livestock housing facilities are recognised to be large point sources of NH3 emissions. Close to such facilities, atmospheric NH3 concentrations are very high, decreasing rapidly with distance over a few hundreds of meters to a few kilometres (Sutton et al. 1998). Measurement of atmospheric NH3 in the vicinity of livestock housing include those by Pitcairn et al. (1998, 2003), with reported values in Scotland of 24 –59 μg m−3 close to source, which declined to background values of 1.6 –5 μg m−3 at 1 km. In order to assess the range of effects of NH3 in natural ecosystems, that can be used for effective NH3 mitigation policies (Dragosits et al. 2006), one can rely on two distinct approaches: (i) direct measurements of atmospheric NH3 concentrations, which provide an estimate of dry NH3-N deposition, but require intensive and costly operations; (ii) monitoring of effects on the biotic component. The latter approach should be carried out using groups of biota that are more sensitive to the pollutant of interest. Lichens have been reported as the most sensitive group to NH3 emissions (e.g. Wolseley et al. 2006a; van Herk 1999). Lichens are symbiotic organisms widely used as biomonitors of environmental changes (e.g. Nimis et al. 1991; Vokou et al. 1999; Geebelen and Hoffmann 2001; Giordani et al. 2002; Pirintsos and Loppi 2003; Geiser and Neitlich 2007).

Monitoring atmospheric pollutants using lichens may be undertaken in three ways: (1) measuring variations in lichens diversity and/or abundance, (2) using variations in physiological parameters, and/or using lichens as accumulators of pollutants (Branquinho 2001), and (3) considering functional groups related to nutrients tolerance, such as the division between nitrophytic/oligotrophic (or nitrophytic/ acidophitic) groups (see van Dobben and ter Braak 1999; Ruisi et al. 2005; Wolseley et al. 2006b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber J. D., Goodale C. L., Ollinger S. V., Smith M. L., Magill A. H., Martin M. E., Hallett R. A., Stoddard J. L. (2003) Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53, 375 –389.

    Article  Google Scholar 

  • Asta J., Erhardt W., Ferretti M., Fornasier F., Kirschbaum U., Nimis P. L., Purvis O. W., Pirintsos S., Scheidegger C., van Haluwyn C., Wirth V. (2002) Mapping lichen diversity as an indicator of environmental quality. In: Nimis, P. L., Scheidegger, C., Wolseley, P. A. (eds.), Monitoring with Lichens- Monitoring Lichens, Nato Science Program-IV, Kluwer, The Netherlands, volume IV, 273 –279.

    Google Scholar 

  • Blondel J., Aronson J. (2004) Biology and Wildlife of the Mediterranean Region. Oxford University Press, 2nd edition, New York, 328.

    Google Scholar 

  • Branquinho C. (2001) Lichens. In: Prasad M. N. V. (eds.), Metals in the Environment: Analysis by Biodiversity, Marcel Dekker, New York, 117 –158.

    Google Scholar 

  • Cruz C., Martins-Loução M. A. (2000) Determination of ammonium concentrations in soils and plant extracts. In: Martins-Loução M. A., Lips S. H. Backhuys (eds.), Nitrogen in a Sustainable Ecosystem: From the Cell to the Plant.Leiden, The Netherlands, 291–297.

    Google Scholar 

  • Dragosits U., Theobald M. R., Place C. J., ApSimon H. M., Sutton M. A. (2006) The potential for spatial planning at the landscape level to mitigate the effects of atmospheric ammonia deposition. Environmental Science & Policy 9, 626–638. EPER (2004) European Pollutant Emission Register. Accessed on-line 15-February-2006 at http://www.eper.cec.eu.int/eper/

  • Erisman J. W., Grennfelt P., Sutton M. A. (2003) The European perspective on nitrogen emission and deposition. Environmental International 29, 331–325.

    Article  Google Scholar 

  • Frati L., Caprasecca E., Santoni S., Gaggi C., Guttova A., Gaudino S., Pati A., Rosamilia S., Pirintsos S. A., Loppi S. (2006) Effects of NO2 and NH3 from road traffic on epiphytic lichens. Environmental Pollution, 142, 58–64.

    Article  CAS  Google Scholar 

  • Galloway J. N., Aber J. D., Erisman J. W., Seitzinger S. P., Howarth R. W., Cowlingn E. B., Cosby B. J. (2003) The nitrogen cascade. Bioscience 53, 341–356.

    Article  Google Scholar 

  • Geebelen W., Hoffmann M. (2001) Evaluation of bio-indication methods using epiphytes by correlating with SO2-pollution parameters. Lichenologist 33, 249–260.

    Article  Google Scholar 

  • Geiser L. H., Neitlich P. N. (2007) Pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens. Environmental Pollution 145, 203–218.

    Article  CAS  Google Scholar 

  • Giordani P., Brunialti G., Alleteo D. (2002) Effects of atmospheric pollution on lichen biodiversity (LB) in a Mediterranean region (Liguria, northwest Italy). Environmental Pollution 118, 53–64.Instituto do Ambiente (2006) Atlas do Ambiente Digital. Instituto do Ambiente, Amadora, Portugal. Accessed on line 15-February-2006 at http://www.iambiente.pt

    Google Scholar 

  • Jovan S., McCune B. (2005) Air-quality bioindication in the greater central valley of California, with epiphytic macrolichen communities. Ecological Applications 15, 1712–1726.

    Article  Google Scholar 

  • Krupa S. V. (2003) Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environmental Pollution 124, 179–221.

    Article  CAS  Google Scholar 

  • Loppi S., Pirintsos S. A. (2000) Effect of dust on epiphytic lichen vegetation in the Mediterranean area (Italy and Greece). Israel Journal of Plant Sciences 48, 91–95.

    Article  Google Scholar 

  • Nimis P. L. (2003) TSB Lichen Herbarium 3.0, University of Trieste, Department of Biology, IH3.0 /02. Accessed on line 15-September-2005 at http://dbiodbs.univ.trieste.it/global/italic_tsb1

  • Nimis P. L., Lazzarin G., Gasparo D. (1991) Lichens as bioindicators of air pollution by SO2 in the Veneto region (NE Italy). Studia Geobotanica 11, 3–76.

    Google Scholar 

  • Pirintsos S. A., Loppi S. (2003) Lichens as bioindicators of environmental quality in dry Mediterranean areas: a case study from northern Greece. Israel Journal of Plant Sciences 51, 143–151.

    Article  Google Scholar 

  • Pitcairn C. E. R., Leith I. D., Sheppard L. J., Sutton M. A., Fowler D., Munro R. C., Tang S., Wilson D. (1998) The relationship between nitrogen deposition, species composition and foliar nitrogen concentrations in woodland flora in the vicinity of livestock farms. Environmental Pollution 102, 41–48.

    Article  CAS  Google Scholar 

  • Pitcairn C. E. R., Fowler D., Leith I. D., Sheppard L. J., Sutton M. A., Kennedy V. , Okello E. (2003) Bioindicators of enhanced nitrogen deposition. Environmental Pollution 126, 353–361.

    Article  CAS  Google Scholar 

  • Purvis O. W., Chimonides J., Din V., Erotokritou L., Jeffries T., Jones G. C., Louwhoff S., Read H., Spiro B. (2003) Which factors are responsbile for the changing lichen floras of London? Science of the Total Environment 310, 179–189.

    Article  CAS  Google Scholar 

  • Rivas-Martínez S., Penas A., Díaz T. E. (2004) Bioclimatic map of Europe- Thermoclimatic belts. University of León, Spain. Accessed on line 15-February-2006 at http://www.globalbioclimat-ics.org/form/tb_med.htm

  • Ruisi S., Zucconi L., Fornasier F., Paoli L., Frati L., Loppi S. (2005) Mapping environmental effects of agriculture with epiphytic lichens. Israel Journal of Plant Sciences 53, 115–124.

    Article  CAS  Google Scholar 

  • Scheidegger C., Groner U., Keller C., Stofer S. (2002) Biodiversity assessment tools-lichens. In: Nimis P. L., C. Sheidegger, P. A. Wolseley (eds.), Monitoring with Lichens, Monitoring Lichens. Kluwer, Dordrecht, The Netherlands, pp 359–365.

    Google Scholar 

  • Sutton M. A., Milford C., Dragosits U., Place C. J., Singles R. J., Smith R. I., Pitcairn C. E. R., Fowler D., Hill J., ApSimon H. M., Ross C., Hill R., Jarvis S. C., Pain B. F. Phillips V. C.,Harrison R., Moss D., Webb J., Espenhahn S. E., Lee D. S., Hornung M., Ullyett J., Bull K. R., Emmett B. A., Lowe J., Wyers G. P. (1998) Dispersion, deposition and impacts of atmospheric ammonia: quantifying local budgets and spatial variability. Environmental Pollution 102,349–361.

    Article  CAS  Google Scholar 

  • Sutton M. A., Miners B., Tang Y. S., Milford C., Wyers G. P., Duyzer J. H., Fowler D. (2001) Comparison of low cost measurement techniques for long-term monitoring of atmospheric ammonia. Journal of environmental Monitoring 3, 446–453.

    Article  CAS  Google Scholar 

  • Tang Y. S., Cape J. N., Sutton M. A. (2001) Development and types of passive samplers for NH3 and NOx. The Scientific World 1, 513–529.

    CAS  Google Scholar 

  • Thompson J. D. (2005) Plant Evolution in the Mediterranean. Oxford University Press, 1st edition, New York, 293.

    Book  Google Scholar 

  • van Dobben H. F., ter Braak C. J. F. (1999) Ranking of epiphytic lichen sensitivity to air pollution using survey data: a comparison of indicator scales. Lichenologist 31, 27–39.

    Article  Google Scholar 

  • van Herk C. M. (1999) Mapping of ammonia pollution with epiphytic lichens in the Netherlands. Lichenologist 31, 9–20.

    Article  Google Scholar 

  • van Herk C. M. (2001) Bark pH and susceptibility to toxic air pollutants as independent causes of changes in epiphytic lichen composition in space and time. Lichenologist 33, 419–441.

    Article  Google Scholar 

  • Vokou D., Pirintsos S. A., Loppi S. (1999) Lichens as bioindicators of temporal variations in air quality around Thessaloniki, northern Greece. Ecological Research 14, 89–96.

    Article  Google Scholar 

  • Wolseley P. A., James P. W., Theobald M. R., Sutton M. A. (2006a) Detecting changes in epiphytic lichen communities at sites affected by atmospheric ammonia from agricultural sources. Lichenologist 38, 161–176.

    Article  Google Scholar 

  • Wolseley P. A., Stofer S., Mitchell R., Truscott A. M., Vanbergen A., Chimonides J., Scheidegger C. (2006b) Variation of lichen communities with landuse in Aberdeenshire, UK. Lichenologist 38, 307–322.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Pinho, P. et al. (2009). Assessment of Critical Levels of Atmospheric Ammonia for Lichen Diversity in Cork-Oak Woodland, Portugal. In: Sutton, M.A., Reis, S., Baker, S.M. (eds) Atmospheric Ammonia. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9121-6_10

Download citation

Publish with us

Policies and ethics