Skip to main content

Environmental sciences comprise the scientific disciplines, or parts of them, that consider the physical, chemical and biological aspects of the environment (Allaby 1996). Environmental sciences are possibly the largest grouping of sciences, drawing heavily on life sciences and earth sciences, both of which are relatively large groupings themselves. Life sciences deal with living organisms and include (among others) agriculture, biology, biophysics, biochemistry, cell biology, genetics, medicine, taxonomy and zoology. Earth sciences deal with the physical and chemical aspects of the solid Earth, its waters and the air that envelops it. Included are the geologic, hydrologic, and atmospheric sciences. The latter are concerned with the structure and dynamics of Earth's atmosphere and include meteorology and climatology.

The field of environmental science is very interdisciplinary. It exists most obviously as a body of knowledge on its own right when a team of specialists assembles to address a particular issue (Allaby 1996). For instance, a comprehensive study of a particular stretch of a river would involve determining the geological composition of the riverbed (geology), determining the chemical and physical properties of the water (chemistry, physics), as well as sampling and recording the species living in and near the water (biology). Environmental sciences are highly relevant to environmental management, which is concerned with directing human activities that affect the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allaby, M. (1996). Basics of environmental science. London: Routledge

    Google Scholar 

  • Andrienko, G., Malerba, D., May, M., & Teisseire, M. (Eds.) (2005). Proceedings of the ECML/PKDD 2005 Workshop on Mining Spatio-Temporal Data. Portugal: University of Porto

    Google Scholar 

  • Bell, J. F. (1999). Tree based methods. In A. H. Fielding, (Ed.) Machine learning methods for ecological applications (pp. 89–105). Dordrecht: Kluwer

    Google Scholar 

  • Blockeel, H., De Raedt, L., & Ramon, J. (1998). Top-down induction of clustering trees. Proceedings of the Fifteenth International Conference on Machine Learning (pp. 55–63). San Francisco: Morgan Kaufmann

    Google Scholar 

  • Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Belmont, CA: Wadsworth

    Google Scholar 

  • Clark, P., & Boswell, R. (1991). Rule induction with CN2: Some recent improvements. Proceedings of the Fifth European Working Session on Learning (pp. 151–163). Berlin: Springer

    Google Scholar 

  • Debeljak, M., Džeroski, S., Jerina, K., Kobler, A., & Adamič, M. (2001). Habitat suitability modelling of red deer (Cervus elaphus, L.) in South-Central Slovenia. Ecological Modelling 138321–330

    Article  Google Scholar 

  • Debeljak, M., Cortet, J., Demšar, D., & Džeroski, S. (2005). Using data mining to assess the effects of Bt maize on soil microarthropods. Proceedings of the Nineteenth International Conference Informatics for Environmental Protection (pp. 615–620). Czech Republic: Brno

    Google Scholar 

  • Demšar, D., Džeroski, S., Debeljak, M., & Henning Krogh, P. (2006a). Predicting aggregate properties of soil communities vs. community structure in an agricultural setting. Proceedings of the Twentieth International Conference on Informatics for Environmental Protection (pp. 295–302). Aachen: Shaker Verlag

    Google Scholar 

  • Demšar, D., Džeroski, S., Larsen, T., Struyf, J., Axelsen, J., Bruns-Pedersen, M., & Henning Krogh, P. (2006b). Using multi-objective classification to model communities of soil microarthropods. Ecological Modelling 194131–143

    Google Scholar 

  • Džeroski, S. (2001). Applications of symbolic machine learning to ecological modelling. Ecological Modelling 146263– 273, 2001

    Article  Google Scholar 

  • Džeroski, S., & Drumm, D. (2003). Using regression trees to identify the habitat preference of the sea cucumber (Holothuria leucospilota) on Rarotonga, Cook Island. Ecological Modelling 170219–226

    Article  Google Scholar 

  • Džeroski, S., Grbović, J., & Blockeel, H. (2001). Predicting river water communities with logical decision trees. Book of Abstracts, Third European Ecological Modelling ConferenceCroatia: Dubrovnik

    Google Scholar 

  • Džeroski, S., Grbović, J., Walley, W. J., & Kompare, B. (1997). Using machine learning techniques in the construction of models. Part II: Rule induction. Ecological Modelling 9595–111

    Article  Google Scholar 

  • Fielding, A. H. (1999a). An introduction to machine learning methods. In A. H. Fielding, (Ed.) Machine learning methods for ecological applications (pp. 1–35). Dordrecht: Kluwer

    Google Scholar 

  • Fielding, A. H. (Ed.) (1999b).Machine learning methods for ecological applications. Dordrecht: Kluwer

    Google Scholar 

  • Harrison, P. A., Berry, P. M., Butt, N., & New, M. (2006). Modelling climate change impacts on species distributions at the European scale: implications for conservation policy.Environmental Science and Policy,9(2). 116–128

    Article  Google Scholar 

  • Jeffers, J. N. R. (1999). Genetic algorithms I. In A. H. Fielding (Ed.),Machine learning methods for ecological applications(pp. 107–121). Dordrecht: Kluwer

    Google Scholar 

  • Jerina, K., Debeljak, M., Kobler, A., & Adamič, M. (2003). Modeling the brown bear population in Slovenia: A tool in the conservation management of a threatened species.Ecological Modelling,170, 453–469

    Article  Google Scholar 

  • Joergensen, S. E., & Bendoricchio, G. (2001).Fundamentals of ecological modelling. Amsterdam: Elsevier

    Google Scholar 

  • Kampichler, C., Džeroski, S., & Wieland, R. (2000). The application of machine learning techniques to the analysis of soil ecological data bases: Relationships between habitat features andCollembolacommunity characteristics.Soil Biology and Biochemistry 32, 197–209

    Article  CAS  Google Scholar 

  • Krebs, C. J. (1972).Ecology. New York: Harper and Row

    Google Scholar 

  • Krebs, C. J. (1989).Ecological methodology. HarperCollins, New York, NY

    Google Scholar 

  • Lee, C.-H., Greiner, R., & Schmidt, M. (2005). Support vector random fields for spatial classification.Proceedings of the Ninth European Conference on Principles and Practice of Knowledge Discovery in Databases(pp. 121–132). Berlin: Springer

    Google Scholar 

  • Lek-Ang, S., Deharveng, L., & Lek, S. (1999). Predictive models of collembolan diversity and abundance in a riparian habitat.Ecological Modelling,120(2–3), 247– 260

    Article  Google Scholar 

  • Lek, S., & Guegan, J. F. Guest (Eds.) (1999). Application of artificial neural networks in ecological modelling. Special issue ofEcological Modelling 120(2–3)

    Google Scholar 

  • Mitchell, T. (1997).Machine learning. New York: McGraw-Hill

    Google Scholar 

  • Ogris, N., & Jurc, M. (2007). Potential changes in the distribution of maple species (Acer pseudoplatanus, A. campestre, A. platanoides, A. obtusatum) due to climate change in Slovenia.Proceedings of the Symposium on Climate Change Influences on Forests and Forestry. Slovenia: University of Ljubljana

    Google Scholar 

  • Ozesmi, S. L., & Ozesmi, U. (1999). An artificial neural network approach to spatial habitat modelling with interspecific interaction.Ecological Modelling,116(1), 15–31

    Article  Google Scholar 

  • Quinlan, J. R. (1986). Induction of decision trees.Machine Learning,1, 81–106

    Google Scholar 

  • Quinlan J. R. (1992). Learning with continuous classes.Proceedings of the Fifth Australian Joint Conference on Artificial Intelligence(pp. 343–348). Singapore: World Scientific

    Google Scholar 

  • Quinlan, J. R. (1993).Programs for machine learning. San Mateo, CA: Morgan Kaufmann

    Google Scholar 

  • Raven, P. H., Scott, J. M., Heglund, P., & Morrison, M. (2002).Predicting species occurrences: Issues of accuracy and scale. Washington, DC: Island Press

    Google Scholar 

  • Witten, I. H., & Frank, E. (1999).Data mining: Practical machine learning tools and techniques with Java implementations. San Francisco: Morgan Kaufmann

    Google Scholar 

  • Ženko, B., Džeroski, S., & Struyf, J. (2006). Learning predictive clustering rules.Proceedings of the Fourth International Workshop on Knowledge Discovery in Inductive Databases(pp. 234–250). Berlin: Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sašo DŲeroski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

DŲeroski, S. (2009). Machine Learning Applications in Habitat Suitability Modeling. In: Haupt, S.E., Pasini, A., Marzban, C. (eds) Artificial Intelligence Methods in the Environmental Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9119-3_19

Download citation

Publish with us

Policies and ethics