Skip to main content

At present, climate change is a “hot topic”, not only in scientific analyses and papers by researchers, but also in wider discussions among economists and policy-makers.

In whatever area you are, the role of modeling appears crucial in order to understand the behavior of the climate system and to grasp its complexity. Furthermore, once validated on the past, a model represents the only chance to make projections about the future behavior of the climate system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonić, O., Križan, J., Marki, A., & Bukovec, D. (2001). patio-temporal interpolation of climatic variables over egion of complex terrain using neural networks. Ecological Modelling, 138, 255–263

    Article  Google Scholar 

  • Boulanger, J.-P., Martinez, F., & Segura, E. C. (2006). Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part I: Temperature mean state and seasonal cycle in South America. Climate Dynamics, 27, 233–259

    Article  Google Scholar 

  • Boulanger, J.-P., Martinez, F., & Segura, E. C. (2007). Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part II: Precipitation mean state and seasonal cycle in South America. Climate Dynamics, 28, 255–271

    Article  Google Scholar 

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140

    Google Scholar 

  • Cannon, A. J. (2006a). Nonlinear principal predictor analysis: Application to the Lorenz system. Journal of Climate, 19, 579–589

    Article  Google Scholar 

  • Cannon, A. J. (2006b). A hybrid neural network/analog model for climate downscaling. Proceedings of the 2006 IEEE World Conference on Computational Intelligence. IEEE: Vancouver, Canada

    Google Scholar 

  • Cannon, A. J., & Whitfield, P. H. (2002). Downscaling recent streamflow conditions in British Columbia, Canada using ensemble neural network models. Journal of Hydrology, 259, 136–151

    Article  Google Scholar 

  • Casaioli, M., Mantovani, R., Proietti Scorzoni, F., Puca, S., Speranza, A., & Tirozzi, B. (2003). Linear and nonlinear postprocessing of numerical forecasted surface temperature. Nonlinear Processes in Geophysics, 10, 373–383

    Google Scholar 

  • Cavazos, T. (2000). Using self-organizing maps to investigate extreme climate events: An application to wintertime precipitation in the Balkans. Journal of Climate, 13, 1718–1732

    Article  Google Scholar 

  • Cavazos, T., & Hewitson, B. C. (2005). Performance of NCEP- NCAR reanalysis variables in statistical downscaling of daily precipitation. Climate Research, 28, 95–107

    Article  Google Scholar 

  • Cavazos, T., Comrie, A. C., & Liverman, D. M. (2002). Intrasea- sonal variability associated with Wet Monsoons in Southeast Arizona. Journal of Climate, 15, 2477–2490

    Article  Google Scholar 

  • Corti, S., Molteni, F., & Palmer, T. N. (1999). Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature, 398, 799–802

    Article  CAS  Google Scholar 

  • Dibike, Y. B., & Coulibaly, P. (2006). Temporal neural networks for downscaling climate variability and extremes. Neural Networks, 19, 135–144

    Article  Google Scholar 

  • Evans, E., Bhatti, N., Kinney, J., Pann, L., Peñla, M., Yang, S.- C., Kalnay, E., & Hansen, J. (2004). RISE undergraduates find that regime changes in Lorenz's model are predictable. Bulletin of the American Meteorological Society, 85, 520– 524

    Article  Google Scholar 

  • Gutierrez, J. M., Cano R., Cofiño, A. S., & Sordo, C. (2005). Analysis and downscaling multi-model seasonal forecast in Peru using self-organizing maps. Tellus, 57A, 435–447

    Google Scholar 

  • Haylock, M. R., Cawley, G. C., Harpham, C., Wilby, R. L., & Goodess, C. M. (2006). Downscaling heavy precipitation over the United Kingdom: A comparison of dynamical and statistical methods and their future scenarios. International Journal of Climatology, 26, 1397–1415

    Article  Google Scholar 

  • Hewitson, B. C., & Crane, R. G. (2006). Consensus between GCM climate change projections with empirical downscaling: Precipitation downscaling over South Africa. International Journal of Climatology, 26, 1315–1337

    Article  Google Scholar 

  • Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., & Johnson, C. A. (Eds.). (2001). Climate change 2001: The scientific basis (pp. 881). Cambridge: Cambridge University Press

    Google Scholar 

  • Kalnay, E., Corazza, M., & Cai, M. (2002). Are bred vectors the same as Lyapunov vectors?. Proceedings of the Symposium on Observations, Data Assimilations, and Probabilistic Prediction, 82nd Annual Meeting of the American Meteorological Society. AMS, CD ROM: Orlando, FL

    Google Scholar 

  • Khan, M. S., Coulibaly, P., & Dibike, Y. (2006). Uncertainty analysis of statistical downscaling methods. Journal of Hydrology, 319, 357–382

    Article  Google Scholar 

  • Knutti, R., Stocker, T. F., Joos, F., & Plattner, G.-K. (2003). Probabilistic climate change projections using neural networks. Climate Dynamics, 21, 257–272

    Article  Google Scholar 

  • Knutti, R., Joos, F., Müller, S. A., Plattner, G.-K., & Stocker, T. F. (2005). Probabilistic climate change projections for CO2 stabilization profiles, Geophysical Research Letters, 32(L20707). DOI: 10.1029.2005GL023294

    Google Scholar 

  • Leloup, J. A., Lachkar, Z., Boulanger, J.-P., & Thiria, S. (2007). Detecting decadal changes in ENSO using neural networks. Climate Dynamics, 28, 147–162

    Article  Google Scholar 

  • Lorenz, E. N. (1963). Deterministic non-periodic flow. Journal of Atmospheric Sciences, 20, 130–141

    Article  Google Scholar 

  • Marzban, C. (2003). A neural network for post-processing model output: ARPS. Monthly Weather Review, 131, 1103–1111

    Article  Google Scholar 

  • Marzban, C., Sandgathe, S., & Kalnay, E. (2005). MOS, Perfect Prog, and Reanalysis Data. Monthly Weather Review, 134, 657–663

    Article  Google Scholar 

  • Mehrotra, R., & Sharma, A. (2005). A nonparametric nonhomo- geneous hidden Markov model for downscaling of multisite daily rainfall occurrences. Journal of Geophysical Research, 110(D16108). DOI: 10.1029/2004JD005677

    Google Scholar 

  • Miksovsky, J., & Raidl, A. (2005). Testing the performance of three nonlinear methods of time series analysis for prediction and downscaling of European daily temperatures. Nonlinear Processes in Geophysics, 12, 979–991

    Google Scholar 

  • Moriondo, M., & Bindi, M. (2006). Comparisons of temperatures simulated by GCMs, RCMs and statistical downscal- ing: Potential application in studies of future crop development. Climate Research, 30, 149–160

    Article  Google Scholar 

  • Olsson, J., Uvo, C. B., & Jinno, K. (2001). Statistical atmospheric downscaling of short-term extreme rainfall by neural networks. Physics and Chemistry of the Earth (B), 26, 695–700

    Article  Google Scholar 

  • Palmer, T. N. (1999). A nonlinear dynamical perspective on climate prediction. Journal of Climate, 12, 575–591

    Article  Google Scholar 

  • Pasini, A. (2005). From observations to simulations. A conceptual introduction to weather and climate modelling (201 pp.). Singapore: World Scientific

    Google Scholar 

  • Pasini, A. (2007). Predictability in past and future climate conditions: a preliminary analysis by neural networks using unforced and forced Lorenz systems as toy models. Proceedings of the 5th Conference on Artificial Intelligence and its Applications to Environmental Sciences, 87th Annual Meeting of the American Meteorological Society. AMS, CD ROM: San Antonio, TX

    Google Scholar 

  • Pasini, A., & Pelino, V. (2005). Can we estimate atmospheric predictability by performance of neural network forecasting? The toy case studies of unforced and forced Lorenz Models. Proceedings of the IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (pp. 69–74). IEEE: Giardini Naxos, Italy

    Google Scholar 

  • Pasini, A., & Potestà, S. (1995). Short-range visibility forecast by means of neural-network modelling: A case study. Nuovo Cimento, C24, 505–516

    Google Scholar 

  • Pasini, A., Pelino, V., & Potestà, S. (2001). A neural network model for visibility nowcasting from surface observations: Results and sensitivity to physical input variables. Journal of Geophysical Research, 106(D14), 14951–14959

    Article  Google Scholar 

  • Pasini, A., Ameli, F., & Lorè, M. (2003). Short range forecast of atmospheric radon concentration and stable layer depth by neural network modelling. Proceedings of the IEEE International Symposium on Computational Intelligence for Measurement Systems and Applications (pp. 85–90). IEEE: Lugano, Switzerland

    Google Scholar 

  • Pasini, A., Lorè, M., & Ameli, F. (2006). Neural network modelling for the analysis of forcings/temperatures relationships at different scales in the climate system. Ecological Modelling, 191, 58–67

    Article  Google Scholar 

  • Sailor, D. J., Hu, T., Li, X., & Rosen, J. N. (2000). A neural network approach to local downscaling of GCM output for assessing wind power implications of climate change. Renewable Energy, 19, 359–378

    Article  Google Scholar 

  • Schoof, J. T., & Pryor, S. C. (2001). Downscaling temperature and precipitation: A comparison of regression-based methods and artificial neural networks. International Journal of Climatology, 21, 773–790

    Article  Google Scholar 

  • Snell, S. E., Gopal, S., & Kaufmann, R. K. (2000). Spatial interpolation of surface air temperatures using artificial neural networks: Evaluating their use for downscaling GCMs. Journal of Climate, 13, 886–895

    Article  Google Scholar 

  • Tatli, H., Dalfes, H. N., & Mentes, S. S. (2004). A statistical downscaling method for monthly total precipitation over Turkey. International Journal of Climatology, 24, 161–180

    Article  Google Scholar 

  • Trigo, R. M., & Palutikof, J. P. (1999). Simulation of daily temperatures for climate change scenarios over Portugal: a neural network model approach. Climate Research, 13, 45– 59

    Article  Google Scholar 

  • Trigo, R. M., & Palutikof, J. P. (2001). Precipitation scenarios over Iberia: A comparison between direct GCM output and different downscaling techniques. Journal of Climate, 14,4422–4446

    Article  Google Scholar 

  • Wang, Y, Leung, L. R., McGregor, J. L., Lee, D.-K., Wang, W.-C., Ding, Y., & Kimura, F. (2004). Regional climate modelling: Progress, challenges, and prospects. Journal of the Meteorological Society of Japan, 82, 1599–1628

    Article  Google Scholar 

  • Weichert, A., & Bürger, G. (1998). Linear versus nonlinear techniques in downscaling. Climate Research, 10, 83–93

    Article  Google Scholar 

  • Wilby, R. L., Charles, S. P., Zorita, E., Timbal, B., Whetton, P., & Mearns, L. O. (2004). Guidelines for use of climate scenarios developed from statistical downscaling methods (Report of the IPCC Task Group TGICA), from http://ipcc-ddc.cru.uea.ac.uk/guidelines/StatDown_Guide.pdf

  • Wu, A., & Hsieh, W. W. (2002). Nonlinear canonical correlation analysis of the tropical Pacific wind stress and sea surface temperature. Climate Dynamics, 19, 713–722

    Article  Google Scholar 

  • Wu, A., Hsieh, W. W., & Tang, B. (2006). Neural network forecasts of the tropical Pacific sea surface temperatures. Neural Networks, 19, 145–154

    Article  Google Scholar 

  • Yuval & Hsieh, W. W. (2003). An adaptive nonlinear MOS scheme for precipitation forecasts using neural networks. Weather and Forecasting, 18, 303–310

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonello Pasini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Pasini, A. (2009). Neural Network Modeling in Climate Change Studies. In: Haupt, S.E., Pasini, A., Marzban, C. (eds) Artificial Intelligence Methods in the Environmental Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9119-3_12

Download citation

Publish with us

Policies and ethics