Diversity in Factors Regulating Ecdysteroidogenesis in Insects

  • Sandrien Van de Velde
  • Liesbeth Badisco
  • Elisabeth Marchal
  • Jozef Vanden Broeck
  • Guy Smagghe

Abstract Ecdysteroid synthesis in insects was long considered as an exclusive feature of the ecdysial glands in larvae, and control of molting and metamorphosis was long thought to be the only function of ecdysteroids. The ‘classical dogma’ (Delbecque et al., 1990) of insect endocrinology states that ecdysteroids are produced by the prothoracic glands (PGs) (or analogs: ventral glands and ring glands), which are under control of the neuroprotein prothoracicotropic hormone (PTTH) secreted by the insect brain. However, extensive research during the last decades revealed that ecdysteroid synthesis can be performed by several other tissues besides the PGs, and is not solely restricted to larvae. Moreover, other factors besides PTTH have been shown to control ecdysteroid biosynthesis as well. It is now well established that in adult females, the ovaries are the primary source of ecdysteroids, where they play a role in several aspects of reproduction and are incorporated into the eggs for future embryonic development. In males, it has been demonstrated for some insect species that both immature testes in late larval stages and adult testes are capable of producing ecdysteroids. However, in comparison with ovarian ecdysteroidogenesis, not much attention has been paid to research on testicular ecdysteroidogenesis, and the biological role of testicular ecdysteroids remains far less clear. In addition, oenocytes and epidermis have been proposed as alternative sites for ecdysteroid production (reviewed by Delbecque et al., 1990). Ecdysteroidogenesis in insects and multifactorial regulation of ecdysteroidogenesis thus seems far more complex than was initially stated by the classical dogma.

In this chapter, we aim to present an as complete and up-to-date as possible overview of the variety of factors involved in ecdysteroidogenesis, performed by a variety of tissues. Factors are discussed per developmental stage (juvenile/adult) and per ecdysiosynthetic tissue.


Ecdysteroidogenesis Insects Development-reproduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams TS, Filipi PA (1983) Vitellin and vitellogenin concentrations during oogenesis in the first gonotropic cycle of the house fly Musca domestica. J Insect Physiol 29: 723–733CrossRefGoogle Scholar
  2. Adams TS, Li QJ, (1998) Ecdysteroidostatin from the house fly, Musca domestica Arch Insect Biochem Physiol 38: 166–176PubMedCrossRefGoogle Scholar
  3. Adams TS, Hagedorn HH, Wheelock GD (1985) Hemolymph ecdysteroid in the house fly, Musca domestica, during oogenesis and its relationship with vitellogenin levels. J Insect Physiol 31: 91–97CrossRefGoogle Scholar
  4. Adams TS, Gerst JW, Masler EP (1997) Regulation of ovarian ecdysteroid production in the housefly, Musca domestica. Arch Insect Biochem Physiol 35: 135–148CrossRefGoogle Scholar
  5. Agui N, Hiruma K (1977) In vitro activation of neurosecretory brain cells in Mamestra brassicae by β-ecdysone. Gen Comp Endocrinol 33: 467–472PubMedCrossRefGoogle Scholar
  6. Agui N, Granger NA, Gilbert LI, Bollenbacher WE (1979) Cellular localization of the insect prothoracicotropic hormone: in vitro assay of a single neurosecretory cell. Proc Natl Acad Sci USA 76: 5694–5698PubMedCrossRefGoogle Scholar
  7. Arraztoa JA, Monget P, Bondy C, Zhou J (2002) Expression patterns of insulin-like growth factor-binding proteins 1, 2, 3, 5, and 6 in the mid-cycle monkey ovary. J Clin Endocrinol Metab 87: 5220–5228PubMedCrossRefGoogle Scholar
  8. Badisco L, Claeys I, Van Loy T, Van Hiel M, Franssens V, Simonet G, Vanden Broeck J (2007) Neuroparsins, a family of conserved arthropod neuropeptides. Gen Comp Endocrinol 153: 64–71CrossRefGoogle Scholar
  9. Benedeczky I, Malá J, Sehnal F (1980) Ultrastructural study on the innervation of prothoracic glands in Galleria mellonella. Gen Comp Endocrinol 41: 400–407PubMedCrossRefGoogle Scholar
  10. Bersani M, Johnsen AH, Hojrup P, Dunning BE, Andereasen JJ, Hoplst JJ (1991) Human galanin: primary structure and identification of two molecular forms. FEBS Lett 283: 189–194CrossRefGoogle Scholar
  11. Beydon P, Lafont R (1983) Feedback inhibition of ecdysone production by 20-hydroxyecdysone in Pieris brassicae pupae. J Insect Physiol 29: 529–533CrossRefGoogle Scholar
  12. Bidmon H-J, Koolman J (1989) Ecdysteroid receptors located in the central nervous system of an insect. Experientia 45: 106–109CrossRefGoogle Scholar
  13. Birnbaum MJ, Kelly TJ, Woods CW, Imberski RB (1984) Hormonal regulation of ovarian ecdysteroid production in the autogenous mosquito, Aedes atropalpus. Gen Comp Endocrinol 56: 9–18PubMedCrossRefGoogle Scholar
  14. Bjersing L (1967) On the ultrastructure of granulosa lutein cells in porcine corpus luteum. With special reference to endoplasmic reticulum and steroid hormone synthesis. Z Zellforsch Mikrosk Anat 82: 187–211Google Scholar
  15. Blackburn MB, Wagner RM, Kochansky JP, Harrison DJ, Thomas-Laemont P, Raina AK (1995) The identification of two myoinhibitory peptides, with sequence similarities to the galanins, isolated from the ventral nerve cord from Manduca sexta. Regul Peptides 57: 213–219CrossRefGoogle Scholar
  16. Bodnaryk RP (1986) Feedback inhibition of ecdysone production by 20-hydroxyecdysone during pupal-adult metamorphosis of Mamestra configurata. Arch Insect Biochem Physiol 3: 53–60CrossRefGoogle Scholar
  17. Bollenbacher WE, Katahira EJ, O'Brien MA, Gilbert LI, Thomas MK (1984) Insect prothoracicotropic hormone: evidence for two molecular forms. Science 224: 1243–1244CrossRefGoogle Scholar
  18. Bollenbacher WE, Granger NA, Katahira EJ, O'Brien MA (1987) Developmental endocrinology of larval moulting in the tobacco hornworm, Manduca sexta. J Exp Biol 128: 175–192Google Scholar
  19. Borovsky D (2003) Trypsin-modulating oostatic factor: a potential new larvicide for mosquito control. J Exp Biol 206: 3869–3875CrossRefGoogle Scholar
  20. Borovsky D, Carlson DA, Griffin PR, Shabanowitz J, Hunt DF (1990) Mosquito oostatic factor: a novel decapeptide modulating trypsin-like enzyme biosynthesis in the midgut. FASEB J 4: 3015–3020Google Scholar
  21. Borovsky D, Powell CA, Nayar JK, Blalock E, Hayes TK (1994) Characterization and localization of mosquito-gut receptors for trypsin modulating oostatic factor using a complementary peptide and immunocytochemistry. FASEB J 8: 350–355Google Scholar
  22. Brown MR, Graf R, Swiderek KM, Fendley D, Stracker TH, Champagne DE, Lea AO (1998) Identification of a steroidogenic neurohormone in female mosquitoes. J Biol Chem 273: 3967–3971CrossRefGoogle Scholar
  23. Bylemans D (1994) Isolation, characterization and mode of action of two novel folliculostatins of the grey fleshfly, Neobellieria bullata. Ph.D. thesis, University of Leuven, Leuven, Belgium, pp 163Google Scholar
  24. Bylemans D, Borovsky D, Hunt DF, Shabanowitz J, Grauwels L, De Loof A (1994) Sequencing and characterization of trypsin modulating oostatic factor (TMOF) from the ovaries of the grey fleshfly, Neobellieria (Sarcophaga) bullata. Regul Peptides 50: 61–72CrossRefGoogle Scholar
  25. Bylemans D, Hua Y, Chiou S, Koolman J, Borovsky D, De Loof A (1995) Pleiotropic effects of trypsin modulating oostatic factor (Neb-TMOF) of the fleshfly Neobellieria bullata (Diptera: Calliphoridae). Eur J Entomol 92: 143–149Google Scholar
  26. Bylemans D, Verhaert P, Janssen I, Vanden Broeck J, Borovsky D, Ma M, De Loof A (1996) Immunolocalization of the oostatic and prothoracicostatic peptide, Neb-TMOF, in adults of the fleshfly, Neobellieria bullata. Gen Comp Endocrinol 103: 273–280CrossRefGoogle Scholar
  27. Cerstiaens A, Benfekih L, Zouiten H, Verhaert P, De Loof A, Schoofs L (1999) Led-NPF-1 stimulates ovarian development in locusts. Peptides 20: 39–44PubMedCrossRefGoogle Scholar
  28. Christensen AK (1965) The fine structure of testicular interstitial cells in guinea pigs. J Cell Biol 26: 911–934CrossRefPubMedGoogle Scholar
  29. Claeys I, Simonet G, Poels J, Van Loy T, Vercammen L, De Loof A, Vanden Broeck J (2002) Insulin related peptides and their conserved signal transduction pathway. Peptides 23: 807–816PubMedCrossRefGoogle Scholar
  30. Claeys I, Simonet G, Van Loy T, De Loof A, Vanden Broeck J (2003) cDNA cloning and transcript distribution of two novel members of the neuroparsin family in the desert locust, Schistocerca gregaria. Insect Mol Biol 12: 473–481PubMedCrossRefGoogle Scholar
  31. Dai J-D, Gilbert LI (1998) Juvenile hormone prevents the onset of programmed cell death in the prothoracic glands of Manduca sexta. Gen Comp Endocrinol 109: 155–165CrossRefGoogle Scholar
  32. Dedos SG, Fugo H (1996) Effects of fenoxycarb on the secretory activity of the prothoracic glands in the fifth instar of the silkworm, Bombyx mori. Gen Comp Endocrinol 104: 213–224CrossRefGoogle Scholar
  33. Dedos SG, Nagata S, Ito J, Takamiya M (2001) Action kinetics of a prothoracicostatic petide from Bombyx mori and its possible signaling pathway. Gen Comp Endocrinol 122: 98–108CrossRefGoogle Scholar
  34. Delachambre J, Besson MT, Quennedey A, Delbecque JP (1984) Relationships between hormones and epidermal cell cycles during the metamorphosis of Tenebrio molitor. In: Hoffmann J, Porchet M (ed) Biosynthesis, Metabolism and Mode of Action of Invertebrate Hormones. Springer, Berlin, pp 245–254Google Scholar
  35. Delbecque J-P, Meister MF, Quennedey A (1986) Conversion of radiolabelled 2,22,25-tri-eoxyecdysone in Tenebrio pupae. Insect Biochem 16: 57–63CrossRefGoogle Scholar
  36. Delbecque J-P, Connat JL, Lafont R (1988) Polar and apolar metabolites of ecdysteroids during the metamorphosis of Tenebrio molitor. J Insect Physiol 34: 619–624CrossRefGoogle Scholar
  37. Delbecque J-P, Weidner K, Hoffmann KH (1990) Alternative sites for ecdysteroid production in insects. Invertebr Reprod Dev 18: 29–42Google Scholar
  38. De Loof A (2008) Ecdysteroids, juvenile hormone and insect neuropeptides: recent successes and remaining major challenges. Gen Comp Endocrinol 155: 3–13CrossRefGoogle Scholar
  39. De Loof A, Bylemans D, Schoofs L, Janssen I, Huybrechts R (1995a) The folliculostatins of two dipteran insect species, their relation to matrix proteins and prospects for practical applications. Entomol Exp Appl 77: 1–9CrossRefGoogle Scholar
  40. De Loof A, Bylemans D, Schoofs L, Janssen I, Spittaels K, Vanden Broeck J, Huybrechts R, Borovsky D, Hua Y, Koolman J, Sower S (1995b) Folliculostatins, gonadotropins and a model for control of growth in the grey fleshfly, Neobellieria (Sarcophaga) bullata. Insect Biochem Mol Biol 25: 661–667CrossRefGoogle Scholar
  41. Diehl PA (1975) Synthesis and release of hydrocarbons by the oenocytes of the desert locust, Schistocerca gregaria. J Insect Physiol 21: 1237–1246CrossRefGoogle Scholar
  42. Dorn A, Romer F (1976) Structure and function of prothoracic glands and oenocytes in embryos and last larval instars of Oncopeltus fasciatus (Insecta, Heteroptera). Cell Tissue Res 171: 331–350Google Scholar
  43. El-Salhy M, Falkmer S, Kramer KJ, Speirs RD (1983) Immunohistochemical investigations of neuropeptides in the brain, corpora cardiaca, and corpora allata of an adult lepidopteran insect, Manduca sexta (L.). Cell Tissue Res 232: 295–317CrossRefGoogle Scholar
  44. Gelman DB, Beckage NE (1995) Low molecular weight ecdysiotropins in proctodaea of fifth instars of the tobacco hornworm, Manduca sexta (Lepidoptera: Sphingidae), and hosts parasitized by the braconid wasp Cotesia congregata (Hymenoptera: Braconidae). Eur J Entomol 92: 123–129Google Scholar
  45. Gelman DB, Bell RA (1995) Low molecular weight ecdysiotropins in the hemolymph of 5th instars of the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae), and the gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae). Eur J Entomol 92: 131–141Google Scholar
  46. Gelman DB, Borovsky D (2000) Aedes aegypti TMOF modulates ecdysteroid production by prothoracic glands of the gypsy moth, Lymantria dispar. Arch Insect Biochem Physiol 45: 60–68PubMedCrossRefGoogle Scholar
  47. Gelman DB, Woods CW, Loeb MJ, Borkovec AB (1989) Ecdysteroid synthesis by testes of 5th instars and pupae of the European corn borer, Ostrinia nubilalis (Hubner). Invertebr Reprod Dev 15: 177–184Google Scholar
  48. Gelman DB, Thyagaraja BS, Kelly TJ, Masler EP, Bell RA, Borkovec AB (1991) The insect gut: a new source of ecdysiotropic peptides. Experientia 47: 77–80CrossRefGoogle Scholar
  49. Gelman DB, Thyagaraja BS, Bell RA (1993) Ecdysiotropic activity in the lepidopteran hindgut an update. Insect Biochem Mol Biol 23: 25–32CrossRefGoogle Scholar
  50. Gersch M, Eibisch J (1977) Synthesis of ecdysone-14C and ecdysterone-14C from cholesterol-14C in cockroaches (Periplaneta americana) without moulting glands. Experientia 33: 468PubMedCrossRefGoogle Scholar
  51. Giebultowicz JM, Denlinger DL (1985) Identification of neurons innervating the ring gland of the flesh fly larva, Sarcophaga crassipalis Macquartt (Diptera: Sarcophagidae). Int J Insect Morphol Embryol 14: 155–161CrossRefGoogle Scholar
  52. Gilbert LI (2004) Halloween genes encode P450 enzymes that mediate steroid hormone biosynthesis in Drosophila melanogaster. Mol Cell Endocrinol 215: 1–10CrossRefGoogle Scholar
  53. Gilbert LI, Song Q, Rybczinski R (1997) Control of ecdysteroidogenesis: activation and inhibition of prothoracic gland activity. Invertebr Neurosci 3: 205–216CrossRefGoogle Scholar
  54. Gilbert LI, Rybczinski R, Song Q, Mizoguchi A, Morreale R, Smith WA, Matubayashi H, Shionoya M, Nagata S, Kataoka H (2000) Dynamics regulation of prothoracic gland ecdyster- oidogenesis: Manduca sexta recombinant prothoracicotropic hormone and brain extracts have identical effects. Insect Biochem Mol Biol 30: 1079–1089PubMedCrossRefGoogle Scholar
  55. Gilbert LI, Rybczynski R, Warren JT (2002) Control and biochemical nature of the ecdysteroidog- enic pathway. Annu Rev Entomol 47: 883–916PubMedCrossRefGoogle Scholar
  56. Girardie J, Girardie A (1996) Lom OMP, a putative ecdysiotropic factor for the ovary in Locusta migratoria. J Insect Physiol 42: 215–221CrossRefGoogle Scholar
  57. Girardie J, Girardie A, Huet JC, Pernollet JC (1989) Amino acid sequence of locust neuroparsins. FEBS Lett 245: 4–8CrossRefGoogle Scholar
  58. Girardie J, Richard O, Huet JC, Nespoulous C, Van Dorsselaer A, Pernollet JC (1991) Physical characterization and sequence identification of the ovary maturating parsin. A new neurohormone purified from the nervous corpora cardiaca of the African locust (Locusta migratoria migratorioides). Eur J Biochem 202: 1121–1126CrossRefGoogle Scholar
  59. Girardie J, Richard O, Girardie A (1996) Detection of vitellogenin in the haemolymph of larval female locusts (Locusta migratoria) treated with the neurohormone, Lom OMP. J Insect Physiol 42: 107–113CrossRefGoogle Scholar
  60. Girardie J, Huet JC, Atay-Kadiri Z, Ettaouil S, Delbecque JP, Fournier B, Pernollet JC, Girardie A (1998) Isolation, sequence determination, physical and physiological characterization of the neuroparsins and ovary maturating parsins of Schistocerca gregaria. Insect Biochem Mol Biol 28: 641–650PubMedCrossRefGoogle Scholar
  61. Goodman WG, Granger NA (2005) The juvenile hormones. In: Gilbert LI, Iatrou K, Gill S (ed) Comprehensive Molecular Insect Science. Elsevier, Oxford, vol. 3, pp 319–408Google Scholar
  62. Graf R, Neuenschwander S, Brown MR, Ackermann U (1997) Insulin-mediated secretion of ecdysteroids from mosquito ovaries and molecular cloning of the insulin receptor homologue from ovaries of bloodfed Aedes aegypti. Insect Mol Biol 6: 151–163CrossRefGoogle Scholar
  63. Granger NA, Whisenton LR, Janzen WP, Bollenbacher WE (1987) Interendocrine control by 20-hydroxyecdysone of the corpora allata of Manduca sexta. Insect Biochem 17: 949–953CrossRefGoogle Scholar
  64. Gu SH (2006) Autocrine activation of DNA synthesis in the prothoracic gland cells of the silkworm, Bombyx mori. J Insect Physiol 52: 136–145PubMedCrossRefGoogle Scholar
  65. Gu SH (2007) Autocrine activation of ecdysteroidogenesis in the prothoracic glands of the silkworm, Bombyx mori. J Insect Physiol 53: 538–549PubMedCrossRefGoogle Scholar
  66. Gu SH, Chow YS (2005) Temporal changes of DNA synthesis in the prothoracic gland cells during larval development and their correlation with ecdysteroidogenic activity in the silkworm, .Bombyx mori. J Exp Zool Part A Comp Exp Biol 303: 249–258CrossRefGoogle Scholar
  67. Gu SH, Chow YS, Yin CM (1997) Involvement of juvenile hormone in regulation of prothoraci- cotropic hormone transduction during the early last larval instar of Bombyx mori. Mol Cell Endocrinol 127: 109–116CrossRefGoogle Scholar
  68. Hagedorn HH (1985) The role of ecdysteroids in reproduction. In: Kerkut GA, Gilbert LI (ed) Comprehensive Insect Physiology, Biochemistry and Pharmacology. Pergamon Press, Oxford, vol. 8, pp 205–262Google Scholar
  69. Hartfelder K (2000) Insect juvenile hormone: from “status quo” to high society. Braz J Med Biol Res 33: 157–177PubMedCrossRefGoogle Scholar
  70. Hayes GC, Muehleisen DP, Bollenbacher WE, Watson RD (1995) Stimulation of ecdyster- oidogenesis by small prothoracicotropic hormone: role of calcium. Mol Cell Endocrinol 115: 105–112CrossRefGoogle Scholar
  71. Helbling P, Graf R (1998) Localization of the mosquito insulin receptor homologue (MIR) in reproducing yellow fever mosquitoes (Aedes aegypti). J Insect Physiol 44: 1127–1135PubMedCrossRefGoogle Scholar
  72. Hintze-Podufal C (1970) The innervation of the prothoracic glands of Cerura vinula L. (Lepidoptera). Experientia 26: 1269–1271PubMedCrossRefGoogle Scholar
  73. Hiruma K (1986) Regulation of prothoracicotropic hormone release by juvenile hormone in the penultimate and last instar larvae of Mamestra brassicae. Gen Comp Endocrinol 63: 201–211PubMedCrossRefGoogle Scholar
  74. Hoffmann KH, Gerstenlauer B (1997) Effects of ovariectomy and allatectomy on ecdysteroid synthesis and ecdysteroid titers during larval-adult development of Gryllus bimaculatus. (Ensifera: Gryllidae). Arch Insect Biochem Physiol 35: 149–158CrossRefGoogle Scholar
  75. Hsiao T, Hsiao C, De Wilde J (1975) Moulting hormone production in the isolated larval abdomen of the Colorado beetle. Nature 255: 727–728CrossRefGoogle Scholar
  76. Hua Y, Koolman J (1995) An ecdysiostatin from flies. Regul Peptides 57: 263–271CrossRefGoogle Scholar
  77. Hua Y, Bylemans D, De Loof A, Koolman J (1994) Inhibition of ecdysone biosynthesis in flies by a hexapeptide isolated from vitellogenic ovaries. Mol Cell Endocrinol 104: R1–R4PubMedCrossRefGoogle Scholar
  78. Hua Y, Tanaka Y, Nakamura K, Sakakibara M, Nagata S, Kataoka H (1999) Identification of a prothoracicostatic peptide in the larval brain of the silkworm, Bombyx mori. J Biol Chem 274: 31169–31173CrossRefGoogle Scholar
  79. Huybrechts R, De Loof A (1977) Induction of vitellogenin synthesis in male Sarcophaga bullata by ecdysterone. J Insect Physiol 23: 1359–1362CrossRefGoogle Scholar
  80. Ishizaki H, Suzuki A (1994) The brain secretory peptides that control moulting and metamorphosis in the silkworm, Bombyx mori. Int J Dev Biol 38: 301–310PubMedGoogle Scholar
  81. Iwami M, Furuya I, Kataoka H (1996) Bombyxin-related peptides: cDNA structure and expression in the brain of the hornworm Agrius convolvuli.. Insect Biochem Mol Biol 26: 25–32PubMedCrossRefGoogle Scholar
  82. Janssen I (1997) Endocrine aspects of oogenesis in a few insect species. Ph.D. thesis, University of Leuven, Leuven, Belgium, pp 115Google Scholar
  83. Janssen T, Claeys I, Simonet G, De Loof A, Girardie J, Vanden Broeck J (2001) cDNA cloning and transcript distribution of two different neuroparsin precursors in the desert locust, .Schistocerca gregaria. Insect Mol Biol 10: 183–189PubMedCrossRefGoogle Scholar
  84. Jarvis TJ, Earley FGP, Rees HH (1994) Ecdysteroid biosynthesis in larval testes of Spodoptera littoralis. Insect Biochem Mol Biol 24: 531–537CrossRefGoogle Scholar
  85. Kagawa N, Bischof LJ, Cheng P-Y, Anwar A, Waterman MR (1999) Biochemical diversity of peptide-hormone-dependent regulation of steroidogenic P450s. Drug Metab Rev 31: 333–342PubMedCrossRefGoogle Scholar
  86. Kappler C, Goltzene F, Lagueux M, Hetru C, Hoffmann JA (1986) Role of the follicle cells and oocytes in ecdysone biosynthesis and esterification in vitellogenic females of Locusta migratoria. Int J Invertebr Reprod 9: 17–34Google Scholar
  87. Kataoka H, Nagasawa H, Isogai A, Ishizaki H, Suzuki A (1991) Prothoraciotropic hormone of the silkworm, Bombyx mori: amino acid sequence and dimeric structure. Agric Biol Chem 55: 73–86PubMedGoogle Scholar
  88. Kawakami A, Kataoka H, Oka T, Mizoguchi A, Kimura-Kawakami M, Adachi T, Iwami M, Nagasawa H, Suzuki A, Ishizaki H (1990) Molecular cloning of the Bombyx mori prothoraci-cotropic hormone. Science 247: 1333–1335CrossRefGoogle Scholar
  89. Keightley DA, Lou KJ, Smith WA (1990) Involvement of translation and transcription in insect steroidogenesis. Mol Cell Endocrinol 74: 229–237PubMedCrossRefGoogle Scholar
  90. Kim AJ, Cha GH, Kim K, Gilbert LI, Lee CC (1997) Purification and characterization of the prot-horacicotropic hormone of Drosophila melanogaster. Proc Natl Acad Sci USA 94: 1130–1135PubMedCrossRefGoogle Scholar
  91. Kimura-Kawakami M, Iwami M, Kawakami A, Nagasawa H, Suzuki A, Ishizaki H (1992) Structure and expression of bombyxin-related peptide genes of the moth Samia cynthia ricini. Gen Comp Endocrinol 86: 257–268PubMedCrossRefGoogle Scholar
  92. Kiriishi S, Nagasawa H, Kataoka H, Suzuki A, Sakurai S (1992) Comparison of the in vivo and in vitro effects of bombyxin and prothoracicotropic hormone on prothoracic glands of the silkworm, Bombyx mori. Zool Sci 9: 149–155Google Scholar
  93. Klowden MJ (1997) Endocrine aspects of mosquito reproduction. Arch Insect Biochem Physiol 35: 491–512CrossRefGoogle Scholar
  94. Knowles F (1965) Neuroendocrine correlations at the level of ultrastructure. Arch Anat Microsc 54: 343–357Google Scholar
  95. Kondo H, Ino M, Suzuki A, Ishizaki H, Iwami M (1996) Multiple gene copies for bombyxin, an insulin-related peptide of the silkworm Bombyx mori: structural signs for gene rearrangement and duplication responsible for generation of multiple molecular forms of bombyxins. J Mol Biol 259: 926–937CrossRefGoogle Scholar
  96. Koolman J (1995) Control of ecdysone biosynthesis in insects. Neth J Zool 45: 83–88CrossRefGoogle Scholar
  97. Kopecć S (1922) Studies on the necessity of the brain for the inception of insect metamorphosis. Biol Bull 42: 323–342CrossRefGoogle Scholar
  98. Lea AO (1967) The medial neurosecretory cells and egg maturation in mosquitoes. J Insect Physiol 13: 419–429PubMedCrossRefGoogle Scholar
  99. Lea AO (1972) Regulation of egg maturation in the mosquito by the neuroendocrine system: the role of the corpus cardiacum. Gen Comp Endocrinol Suppl 3: 602–608CrossRefGoogle Scholar
  100. Lin JL, Gu SH (2007) In vitro and in vivo stimulation of extracellular signal-regulated kinase (ERK) by the prothoracicotropic hormone in prothoracic gland cells and its developmental regulation in the silkworm, Bombyx mori. J Insect Physiol 53: 622–631PubMedCrossRefGoogle Scholar
  101. Liu F, Baggerman G, D'Hertog W, Verleyen P, Schoofs L, Wets G (2006) In silico identification of new secretory peptide genes in Drosophila melanogaster. Mol Cell Proteomics 5: 510–522CrossRefGoogle Scholar
  102. Locke M (1969) The ultrastructure of the oenocytes in the molt/intermolt cycle of an insect Calpodes ethlius Stoll. Tissue Cell 1: 103–154CrossRefGoogle Scholar
  103. Loeb MJ, Woods CW, Brandt EP, Borkovec AB (1982) Larval testes of the tobacco budworm: a new source of insect ecdysteroids. Science 218: 896–898CrossRefGoogle Scholar
  104. Loeb MJ, Brandt EP, Woods CW, Borkovec AB (1987) An ecdysiotropic factor from brains of Heliothis virescens, induces testes to produce immunodetectable ecdysteroid in vitro. J Exp Zool 243: 275–282CrossRefGoogle Scholar
  105. Loeb MJ, Brandt EP, Woods CW, Bell RA (1988) Secretion of ecdysteroid by sheaths of testes of the gypsy moth, Lymantria dispar, and its regulation by testes ecdysiotropin. J Exp Zool 248: 94–100CrossRefGoogle Scholar
  106. Loeb MJ, Gelman DB, Bell RA (1993) Second messengers mediating the effects of testis ecdysiotropin in testes of the gypsy moth, Lymantria dispar. Arch Insect Biochem Physiol 23: 13–28CrossRefGoogle Scholar
  107. Loeb MJ, Kochansky JP, Wagner RM, Bell RA (1994) Transduction of the signal initiated by the neuropeptide, testis ecdysiotropin, in testes of the gypsy moth, Lymantria dispar. J Insect Physiol 40: 939–946CrossRefGoogle Scholar
  108. Loeb MJ, Wagner RM, Woods CW, Gelman DG, Harrison D, Bell RA (1997) Naturally occuring analogs of Lymantria testis ecdysiotropin, a gonadotropin isolated from brains of Lymantria dispar pupae. Arch Insect Biochem Physiol 36: 37–50PubMedCrossRefGoogle Scholar
  109. Loeb MJ, De Loof A, Gelman DB, Hakim RS, Jaffe H, Kochansky JP, Meola SM, Schoofs L, Steel C, Vafopoulou X, Wagner RM, Woods CW (2001) Testis ecdysiotropin, an insect gonadotropin that induces synthesis of ecdysteroid. Arch Insect Biochem Physiol 47: 181–188PubMedCrossRefGoogle Scholar
  110. Lonard DM, Bhaskaran G, Dahm KH (1996) Control of prothoracic gland activity by juvenile hormone in fourth instar Manduca sexta larvae. J Insect Physiol 42: 205–213CrossRefGoogle Scholar
  111. Lorenz JI, Lorenz MW, Hoffmann KH (1997) Factors regulating juvenile hormone and ecdysteroid biosynthesis in Gryllus bimaculatus (Ensifera: Gryllidae). Eur J Entomol 94: 369–379Google Scholar
  112. Lorenz MW, Kellner R, Hoffmann KH (1995) A family of neuropeptides that inhibit juvenile hormone biosynthesis in the cricket, Gryllus bimaculatus. J Biol Chem 270: 21103–21108Google Scholar
  113. Lorenz MW, Lorenz JI, Treiblmayr K, Hoffmann KH (1998) In vivo effects of allatostatins in crickets, Gryllus bimaculatus (Ensifera: Gryllidae). Arch Insect Biochem Physiol 38: 32–43CrossRefGoogle Scholar
  114. Lorenz MW, Hoffmann KH, Lorenz JI (2004) Compounds that inhibit ovarian ecdysteroid release in Gryllus bimaculatus (Ensifera: Gryllidae) act as ecdysiotropins in Blaptica dubia (Dictyoptera: Blaberidae). Mitt Dtsch Ges Allg Angew Ent 14: 447–450Google Scholar
  115. Lu D, Lee K Y, Horodyski FM, Witten JL (2002) Molecular characterization and cell-specific expression of a Manduca sexta FLRFamide gene. J Comp Neurol 446: 377–396CrossRefGoogle Scholar
  116. Ma L, Philogène BJR (1985) Oenocyte and prothoracic gland activity in Manduca sexta under varying photoperiod and light conditions. Experientia 41: 935–938CrossRefGoogle Scholar
  117. Manière G, Vanhems E, Delbecque JP (2000) Cyclic AMP-dependent and -independent stimulations of ovarian steroidogenesis by brain factors in the blowfly, Phormia regina. Mol Cell Endocrinol 168: 31–40CrossRefGoogle Scholar
  118. Manière G, Rondot I, Büllesbach EE, Gautron F, Vanhems E, Delbecque JP (2004) Control of ovarian ecdysteroidogenesis by insulin-like peptides in the blowfly (Phormia regina). J Endocrinol 181: 147–156CrossRefGoogle Scholar
  119. Matsumoto S, Brown MR, Suzuki A, Lea AO (1989) Isolation and characterization of ovarian ecdysteroidogenic hormones from the mosquito, Aedes aegypti. Insect Biochem 19: 651–656CrossRefGoogle Scholar
  120. McBrayer Z, Ono H, Shimell M, Parvy JP, Beckstead RB, Warren JT, Thummel CS, Dauphin- Villemant C, Gilbert LI, O'Connor MB (2007) Prothoracicotropic hormone regulates development timing and body size in Drosophila. Dev Cell 13: 857–871.PubMedCrossRefGoogle Scholar
  121. Meister MF, Dimarcq J-L, Kappler C, Hetru C, Lagueux M, Lanot R, Luu B, Hoffmann JA (1985) Conversion of a radiolabelled ecdysone precursor, 2,22,25-trideoxyecdysone, by embryonic and larval tissues of Locusta migratoria. Mol Cell Endocrinol 41: 27–44PubMedCrossRefGoogle Scholar
  122. Meola SM, Loeb MJ, Kochansky JP, Wagner R, Beetham P, Wright MS, Mouneimne Y, Pendleton MW (1998) Immunocytochemical localization of testis ecdysiotropin in the pupa of the gypsy moth, Lymantria dispar (L.) (Lepidoptera: Lymantriidae). J Mol Neurosci 9: 197–210CrossRefGoogle Scholar
  123. Mesnier M, Partiaoglou N, Oberlander H, Porcheron P (2000) Rhytmic autocrine activity in cultured insect epidermal cells. Arch Insect Biochem Physiol 44: 7–16PubMedCrossRefGoogle Scholar
  124. Mizoguchi A (2001) Effects of juvenile hormone on the secretion of prothoracicotropic hormone in the last- and penultimate-instar larvae of the silkworm Bombyx mori. J Insect Physiol 47: 767–775PubMedCrossRefGoogle Scholar
  125. Mizoguchi A, Ishizaki H, Nagasawa H, Kataoka H, Isogai A, Tamura S, Suzuki A, Fujino M, Kitada C (1987) A monoclonal antibody against a synthetic fragment of bombyxin (4 K - prothoracicotropic hormone) from the silkmoth, Bombyx mori: characterization and immunohistochemistry. Mol Cell Endocrinol 51: 227–235PubMedCrossRefGoogle Scholar
  126. Mizoguchi A, Oka T, Kataoka H, Nagasawa H, Suzuki A, Ishizaki H (1990) Immunohistochemical localization of prothoracicotropic hormone-producing neurosecretory cells in the brain of Bombyx mori. Dev Growth Differ 32: 591–598CrossRefGoogle Scholar
  127. Mizoguchi A, Ohashi Y, Hosoda K, Ishibashi J, Kataoka H (2001) Developmental profile of the changes in the prothoracicotropic hormone titer in hemolymph of the silkworm Bombyx mori: correlation with ecdysteroid secretion. Insect Biochem Mol Biol 15: 349–358CrossRefGoogle Scholar
  128. Mizoguchi A, Dedos SG, Fugo H, Kataoka H (2002) Basic pattern of fluctuation in hemolymph PTTH titers during larval-pupal and pupal-adult development of the silkworm, Bombyx mori. Gen Comp Endocrinol 127: 181–189CrossRefGoogle Scholar
  129. Monget P, Besnard N, Huet C, Pisselet C, Monniaux D (1996) Insulin-like growth factor-binding proteins and ovarian folliculogenesis. Horm Res 45: 211–217PubMedCrossRefGoogle Scholar
  130. Nagasawa H, Kataoka H, Isogai A, Tamura S, Suzuki A, Ishizaki H, Mizoguchi A, Fujiwara Y, Suzuki A (1984) Amino-terminal amino acid sequence of the silkworm prothoracicotropic hormone: homology with insulin. Science 226: 1344–1345CrossRefGoogle Scholar
  131. Nagata K, Maruyama K, Kojima K, Yamamoto M, Tanaka M, Kataoka H, Nagasawa H, Isogai A, Ishizaki H, Suzuki A (1999) Prothoracicotropic activity of SBRPs, the insulin-like peptides of the saturniid silkworm Samia cynthia ricini. Biochem Biophys Res Commun 266: 575–578CrossRefGoogle Scholar
  132. Nagata S, Namiki T, Ko R, Kataoka H, Suzuki A (2006) A novel type of receptor cDNA from the prothoracic glands of the silkworm, Bombyx mori. Biosci Biotechnol Biochem 70: 554–558PubMedCrossRefGoogle Scholar
  133. Nakanishi K, Moriyama H, Okauchi T, Fujioka S, Koreeda M (1972) Biosynthesis of α- and β-ecdysones from cholesterol outside the prothoracic gland in Bombyx mori. Science 176: 51–52CrossRefGoogle Scholar
  134. Nauen R, Sorge D, Sterner A, Borovsky D (2001) TMOF-like factor controls the biosynthesis of serine proteases in the larval gut of Heliothis virescens Arch Insect Biochem Physiol 47: 169–180PubMedCrossRefGoogle Scholar
  135. Nichols R (2003) Signaling pathways and physiological functions of Drosophila melanogaster FMRFamide-related peptides. Annu Rev Entomol 48: 485–503PubMedCrossRefGoogle Scholar
  136. Nimi S, Sakurai S (1997) Developmental changes in juvenile hormone and juvenile hormone acid titers in the hemolymph and in vitro juvenile hormone synthesis by corpora allata of the silkworm, Bombyx mori. J Insect Physiol 43: 875–884CrossRefGoogle Scholar
  137. Niwa R, Sakudoh T, Namiki T, Saida K, Fujimoto Y, Kataoka H (2005) The ecdysteroidogenic P450 Cyp302a1/disembodied from the silkworm, Bombyx mori, is transcriptionally regulated by prothoracicotropic hormone. Insect Mol Biol 14: 563–571PubMedCrossRefGoogle Scholar
  138. Philogène BJR, McFarlane JE (1967) The formation of the cuticle in the house cricket, Acheta domesticus (L.) and the role of the oenocytes. Can J Zool 45: 181–190CrossRefGoogle Scholar
  139. Porcheron P, Caruelle J-P, Baehr J-C, Cassier P (1984) Ecdysteroids and integuments in locusts. In: Hoffmann J, Porchet M (ed) Biosynthesis, Metabolism and Mode of Action of Invertebrate Hormones. Springer, Berlin, pp 234–244Google Scholar
  140. Porcheron P, Lafon M, Morinière M, Coudouel N (1988) Production of ecdysteroids by isolated cells from larval epidermis of Locusta migratoria. Comp Endocrinol 7: 7–11Google Scholar
  141. Poretsky L, Cataldo NA, Rosenwaks Z, Giudice LC (1999) The insulin-related ovarian regulatory system in health and disease. Endocr Rev 20: 535–582PubMedCrossRefGoogle Scholar
  142. Raikhel AS (1992) Vitellogenesis in mosquitoes. In: Cho JJ (ed) Advances in Disease Vector Research. Springer, New York, pp 1–39Google Scholar
  143. Redfern CPF (1989) Ecdysiosynthetic tissues. In: Koolman J (ed) Ecdysone: From Chemistry to Mode of Action. Thieme Verlag, Stuttgart/New York, pp 182–187Google Scholar
  144. Rees HH (1985) Biosynthesis of ecdysone. In: Kerkut GA, Gilbert LI (ed) Comprehensive Insect Physiology, Biochemistry and Pharmacology. Pergamon Press, Oxford, vol. 7, pp 249–293Google Scholar
  145. Richter K, Böhm G-A (1997) The molting gland of the cockroach Periplaneta americana: secretory activity and its regulation. Gen Pharmacol 29: 17–21PubMedGoogle Scholar
  146. Richter K, Gersch M (1983) Electrophysiological evidence of nervous involvement in the control of the prothoracic gland in Periplaneta americana. Experientia 39: 917–918CrossRefGoogle Scholar
  147. Riehle MA, Brown MR (1999) Insulin stimulates ecdysteroid production through a conserved signaling cascade in the mosquito Aedes aegypti. Insect Biochem 29: 855–860CrossRefGoogle Scholar
  148. Riehle MA, Brown MR (2002) Insulin receptor expression during development and a reproductive cycle in the ovary of the mosquito Aedes aegypti. Cell Tissue Res 308: 409–420CrossRefGoogle Scholar
  149. Riehle MA, Garczynski SF, Crim JW, Hill CA, Brown MR (2002) Neuropeptides and peptide hormones in Anopheles gambiae. Science 298: 172–175CrossRefGoogle Scholar
  150. Romer F (1974) Ultrastructural changes of the oenocytes of Gryllus bimaculatus DEG (Saltatoria, Insecta) during the molting cycle. Cell Tissue Res 151: 27–46Google Scholar
  151. Romer F (1980) Histochemical and biochemical investigations concerning the function of larval oenocytes of Tenebrio molitor L. (Coleoptera, Insecta). Histochemistry 69: 69–84PubMedCrossRefGoogle Scholar
  152. Romer F (1987) Is the epidermis of Bombyx an additional source of moulting hormones? [abstract]. 8th International Ecdysone Workshop, Marburg.Google Scholar
  153. Romer F, Emmerich H, Nowock J (1974) Biosynthesis of ecdysones in isolated prothoracic glands and oenocytes of Tenebrio molitor in vitro. J Insect Physiol 20: 1975–1987PubMedCrossRefGoogle Scholar
  154. Rountree DB, Bollenbacher WE (1986) The release of the prothoracicotropic hormone in the tobacco hornworm, Manduca sexta, is controlled intrinsically by juvenile hormone. J Exp Biol 120: 41–58Google Scholar
  155. Rybczynski R (2005) Prothoracicotropic hormone. In: Gilbert LI, Iatrou K, Gill S. (ed) Comprehensive Molecular Insect Science. Elsevier, Oxford, vol. 3, pp 61–123Google Scholar
  156. Rybczynski R, Gilbert LI (2006) Protein kinase C modulates ecdysteroidogenesis in the prothoracic gland of the tobacco hornworm, Manduca sexta. Mol Cell Endocrinol 251: 78–87CrossRefGoogle Scholar
  157. Sakurai S (2005) Feedback regulation of prothoracic gland activity. In: Gilbert LI, Iatrou K, Gill S.(ed) Comprehensive Molecular Insect Science. Elsevier, Oxford, vol. 3, pp 409–431Google Scholar
  158. Sakurai S, Williams CM (1989) Short-loop negative and positive feedback on ecdysone secretion by prothoracic gland in the tobacco hornworm, Manduca sexta. Gen Comp Endocrinol 75: 204–216PubMedCrossRefGoogle Scholar
  159. Sakurai S, Okuda M, Ohtaki T (1989) Juvenile hormone inhibits ecdysone secretion and responsiveness to prothoracicotropic hormone in prothoracic glands of Bombyx mori. Gen Comp Endocrinol 75: 222–230PubMedCrossRefGoogle Scholar
  160. Scharrer B (1964) The fine structure of Blattarian prothoracic glands. Z Zellforsch Mikrosk Anat 64: 301–326PubMedCrossRefGoogle Scholar
  161. Sedlak BJ (1985) Structure of endocrine glands. In: Kerkut GA, Gilbert LI (ed) Comprehensive Insect Physiology, Biochemistry and Pharmacology. Pergamon Press, Oxford, vol. 7, pp 25–60Google Scholar
  162. Sevala VM, Sevala VL, Loughton BG, Davey KG (1992) Insulin-like immunoreactivity and molting in Rhodnius prolixus. Gen Comp Endocrinol 86: 231–238PubMedCrossRefGoogle Scholar
  163. Sewer MB, Waterman MR (2003) ACTH modulation of transcription factors responsible for steroid hydroxylase gene expression in the adrenal cortex. Microsc Res Tech 61: 300–307PubMedCrossRefGoogle Scholar
  164. Shapiro JP, Hagedorn HH (2004) Juvenile hormone and the development of ovarian responsiveness to a brain hormone in the mosquito, Aedes aegypti. Gen Comp Endocrinol 46: 176–183CrossRefGoogle Scholar
  165. Shimizu T, Moribayashi A, Agui N (1985) In vitro analysis of spermiogenesis and testicular ecdysteroids in the cabbage armyworm, Mamestra brassicae L. Appl Entomol Zool 20: 56–61Google Scholar
  166. Shimizu T, Yagi S, Agui N (1989) The relationship of testicular and hemolymph ecdysteroid titer to spermiogenesis in the common armyworm, Leucania separata. Entomol Exp Appl 50: 195–198CrossRefGoogle Scholar
  167. Shionoya M, Matsubayashi H, Asahina M, Kuniyoshi H, Nagata S, Riddiford LM, Kataoka H (2003) Molecular cloning of the prothoracicotropic hormone from the tobacco hornworm, Manduca sexta. Insect Biochem Mol Biol 33: 795–801PubMedCrossRefGoogle Scholar
  168. Siegmund T, Korge G (2001) Innervation of the ring gland of Drosophila melanogaster. J Comp Neurol 431: 481–491CrossRefGoogle Scholar
  169. Siew YC, Gilbert LI (1971) Effects of moulting hormone and juvenile hormone on insect endocrine gland activity. J Insect Physiol 17: 2095–2104PubMedCrossRefGoogle Scholar
  170. Soltani N, Quennedey A, Delbecque J-P, Delachambre J (1987) Diflubenzuron-induced alterations during in vitro development of Tenebrio molitor pupal integument. Arch Insect Biochem Physiol 5: 201–209CrossRefGoogle Scholar
  171. Soltani N, Delachambre J, Delbecque J-P (1989) Stage-specific effects of diflubenzuron on ecdysteroid titers during the development of Tenebrio molitor: evidence for a change in hormonal source. Gen Comp Endocrinol 76: 350–356PubMedCrossRefGoogle Scholar
  172. Song Q, Gilbert LI (1998) Alterations in ultraspiracle (USP) content and phosphorylation state accompany feedback regulation of ecdysone synthesis in the insect prothoracic gland. Insect Biochem Mol Biol 28: 849–860PubMedCrossRefGoogle Scholar
  173. Steel CGH (1975) A neuroendocrine feedback mechanism in the insect moulting cycle. Nature 253: 267–269CrossRefGoogle Scholar
  174. Studinger G, Willig A (1975) Biosynthesis of α- and β-ecdysone in isolated abdomens of larvae of Musca domestica. J Insect Physiol 21: 1793–1798PubMedCrossRefGoogle Scholar
  175. Takaki K, Sakurai S (2003) Regulation of prothoracic gland ecdysteroidogenic activity leading to pupal metamorphosis. Insect Biochem Mol Biol 33: 1189–1199PubMedCrossRefGoogle Scholar
  176. Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292: 107–110CrossRefGoogle Scholar
  177. Tatemoto K, Rökaeus A, Jörnvall H, McDonald TJ, Mutt V (1983) Galanin: a novel biologically active peptide from porcine intestine. FEBS Lett 164: 124–128CrossRefGoogle Scholar
  178. Truman JW (2006) Steroid hormone secretion in insects comes of age. PNAS 103: 8909–8910CrossRefGoogle Scholar
  179. Tsuzuki S, Masuta T, Furumo M, Sakurai S, Iwami M (1997) Structure and expression of bombyxin E1 gene, a novel family gene that encodes bombyxin-IV, an insect insulin-related neurosecretory peptide. Comp Biochem Physiol 117: 409–416Google Scholar
  180. Tu MP, Yin CM, Tatar M (2002) Impaired ovarian ecdysone synthesis of Drosophila melanogaster insulin receptor mutants. Aging Cell 1: 158–160CrossRefGoogle Scholar
  181. Tu MP, Yin CM, Tatar M (2005) Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. Gen Comp Endocrinol 142: 347–356CrossRefGoogle Scholar
  182. Vafopoulou X, Steel CG (1997) Ecdysteroidogenic action of Bombyx prothoracicotropic hormone and bombyxin on the prothoracic glands of Rhodnius prolixus in vitro. J Insect Physiol 43: 651–656PubMedCrossRefGoogle Scholar
  183. Vafopoulou X, Steel CG (2005) Testis ecdysiotropic peptides in Rhodnius prolixus: biological activity and distribution in the nervous system and testis. J Insect Physiol 51: 1227–1239PubMedCrossRefGoogle Scholar
  184. Vandersmissen T, De Loof A, Gu SH (2007) Both prothoracicotropic hormone and an autocrine factor are involved in control of prothoracic gland ecdysteroidogenesis in Locusta migratoria and Schistocerca gregaria. Peptides 28: 44–50PubMedCrossRefGoogle Scholar
  185. Van de Velde S, Badisco L, Claeys I, Verleyen P, Chen X, Vanden Bosch L, Vanden Broeck J, Smagghe G (2007) Insulin-like peptides in Spodoptera littoralis (Lepidoptera): detection, localization and identification. Gen Comp Endocrinol 153: 72–79CrossRefGoogle Scholar
  186. Wagner RM, Loeb MJ, Kochansky JP, Gelman DB, Lusby WR, Bell RA (1997) Identification and characterization of an ecdysiotropic peptide from brain extracts of the gypsy moth, Lymantria dispar. Arch Insect Biochem Physiol 34: 175–189CrossRefGoogle Scholar
  187. Wasielewski O, Rosiński G (2007) Gonadoinhibitory effects of Neb-colloostatin and Neb-TMOF on ovarian development in the mealworm, Tenebrio molitor L. Arch Insect Biochem Physiol 64: 131–141PubMedCrossRefGoogle Scholar
  188. Watson RD, Bollenbacher WE (1988) Juvenile hormone regulates the steroidogenic competence of Manduca sexta prothoracic glands. Mol Cell Endocrinol 57: 251–259PubMedCrossRefGoogle Scholar
  189. Watson RD, Yeh WE, Muehleisen DP, Watson CJ, Bollenbacher WE (1993) Stimulation of ecdysteroidogenesis by small prothoracicotropic hormone: role of cyclic AMP. Mol Cell Endocrinol 92: 221–228PubMedCrossRefGoogle Scholar
  190. Webb R, Campbell BK, Garverick HA, Gong JG, Gutierrez CG, Armstrong DG (1999) Molecular mechanisms regulating follicular recruitment and selection. J Reprod Fertil Suppl 54: 33–48PubMedGoogle Scholar
  191. Wei ZJ, Zhang QR, Kang L, Xu WH, Denlinger DL (2005) Molecular characterization and expression of prothoracicotropic hormone during development and pupal diapause in the cotton bollworm, Helicoverpa armigera. J Insect Physiol 51: 691–700PubMedCrossRefGoogle Scholar
  192. Wennauer R, Kassel L, Hoffmann KH (1989) The effects of juvenile hormone, 20- hydroxyecdysone, precocene II, and ovariectomy on the activity of the corpora allata (in vitro) in adult female Gryllus bimaculatus. J Insect Physiol 35: 299–304CrossRefGoogle Scholar
  193. White MF (1998) The IRS-signaling system: a network of docking proteins that mediate insulin action. Mol Cell Biochem 182: 3–11CrossRefGoogle Scholar
  194. Wigglesworth VB (1970) Structural lipids in the insect cuticle and the function of the oenocytes. Tissue Cell 2: 155–179CrossRefGoogle Scholar
  195. Williams CM (1952) Physiology of insect diapause. IV. The brain and prothoracic glands as an endocrine system in the Cecropia silkworm. Biol Bull 103: 120–138CrossRefGoogle Scholar
  196. Wu Q, Brown MR (2006) Signalling and function of insulin-like peptides in insects. Annu Rev Entomol 51: 1–24PubMedCrossRefGoogle Scholar
  197. Xu J, Su J, Shen J, Xu W (2007) Molecular characterization and developmental expression of the gene encoding the prothoracicotropic hormone in the beet armyworm, Spodoptera exigua. Sci China C Life Sci 50: 466–472PubMedCrossRefGoogle Scholar
  198. Xu WH, Denlinger DL (2003) Molecular characterization of prothoracicotropic hormone and diapause hormone in Heliothis virescens during diapause, and a new role for diapause hormone. Insect Mol Biol 12: 509–516PubMedCrossRefGoogle Scholar
  199. Xu WH, Rinehart JP, Denlinger DL (2003) Structural characterization and expression analysis of prothoracicotropic hormone in the cornworm, Helicoverpa zea. Peptides 24: 1319–1325PubMedCrossRefGoogle Scholar
  200. Yamanaka N, Hua Y, Mizoguchi A, Watanabe K, Niwa R, Tanaka Y, Kataoka H (2005) Identification of a novel prothoracicostatic hormone and its receptor in the silkworm Bombyx mori. J Biol Chem 280: 14684–14690CrossRefGoogle Scholar
  201. Yamanaka N, Zitnan D, Kim Y-J, Adams ME, Hua Y, Suzuki Y, Suzuki M, Suzuki A, Satake H, Mizoguchi A, Asaoka K, Tanaka Y, Kataoka H (2006) Regulation of insect steroid hormone biosynthesis by innervating peptidergic neurons. PNAS 103: 8622–8627CrossRefGoogle Scholar
  202. Yan XH, De Bondt HL, Powell CC, Bullock RC, Borovsky D (1999) Sequencing and characterization of the citrus weevil, Diaprepes abbreviatus, trypsin cDNA. Eur J Biochem 262: 627–636CrossRefGoogle Scholar
  203. Yenush L, Fernandez R, Myers MG, Grammer TC, Sun XJ, Blenis J, Pierce JH, Schlessinger J, White MF (1996) The Drosophila insulin receptor activates multiple signaling pathways but requires insulin receptor substrate proteins for DNA synthesis. Mol Cell Biol 16: 2509–2517PubMedGoogle Scholar
  204. Yoshida I, Tsuzuki S, Abdel Salam SE, Ino M, Korayen AM, Sakurai S, Iwami M (1997) Bombyxin F1 gene: structure and expression of a new bombyxin family gene that forms a pair with bombyxin B10 gene. Zool Sci 14: 615–622PubMedCrossRefGoogle Scholar
  205. Yoshida I, Moto K, Sakurai S, Iwami M (1998) A novel member of the bombyxin gene family: structure and expression of bombyxin G1 gene, an insulin-related peptide gene of the silkmoth, Bombyx mori. Dev Genes Evol 208: 407–410CrossRefGoogle Scholar
  206. Yoshimura Y (1998) Insulin-like growth factors and ovarian physiology. J Obstet Gynaecol Res 24: 305–323PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Sandrien Van de Velde
    • Liesbeth Badisco
      • 1
    • Elisabeth Marchal
      • 1
    • Jozef Vanden Broeck
      • 1
    • Guy Smagghe
      1. 1.Section of Animal Physiology and NeurobiologyZoological InstituteLeuvenBelgium

      Personalised recommendations