Contrary to legend, in his quantum theory of the hydrogen atom Bohr did not utilize the photon concept. In fact, he rejected the concept vehemently until the mid-1920s, when experiments forced a change in his outlook. Exchanges with Einstein during this period contributed to the development of Bohr's concept of complementarity and subsequently, he recognized the role of the photon concept in describing one of the complementary aspects of electromagnetic phenomena: energy and momentum exchanges with ponderable matter. Yet, in accord with his interpretation of the correspondence principle, he still denied equal status to the wave and particle pictures, stressing the primacy of the classical wave picture of light and of the classical particle picture of the electron. Curiously enough, Einstein agreed.


Quantum Theory Correspondence Principle Light Quantum Bohr Theory Classical Electromagnetic Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dresden, Max (1987). H. A. Kramers: Between Tradition and Revolution. New York: Springer-Verlag.Google Scholar
  2. 2.
    McDermott, Lillian C., Wilson, Kenneth G., and Jossem, E. Leonard (2001). “Arnold Boris Arons”, Physics Today 54: 76–77.CrossRefGoogle Scholar
  3. 3.
    Arons, Arnold Boris (1965). The Development of Concepts of Physics from the Rationalization of Mechanics to the First Theory of Atomic Structure. Reading, MA: Addison-Wesley.Google Scholar
  4. 4.
    Bohr, Niels (1913). “On the constitution of atoms and molecules”, Philosophical Magazine 26: 1–25. Reprinted in [13], 161–185.Google Scholar
  5. 5.
    ter Haar, D. (1967). The Old Quantum Theory. Oxford: Pergamon.zbMATHGoogle Scholar
  6. 6.
    Hirosige, Tetu and Nisio, Sigeko (1964). “Formation of Bohr's theory of atomic constitution”, Japanese Studies in History of Science 3: 6–28.Google Scholar
  7. 7.
    Planck, Max (1910). “Zur Theorie der Wärmestrahlung”, Annalen der Physik 31: 758–768.Google Scholar
  8. 8.
    Planck, Max (1911). “Eine neue Strahlungshypothese”, Verhandlungen der Deutschen Physikalischen Gesellschaft 13: 138–148.Google Scholar
  9. 9.
    Kuhn, Thomas S. (1978). Black-Body Theory and the Quantum Discontinuity, 1894–1912. Oxford: Clarendon Press/New York: Oxford University Press.Google Scholar
  10. 10.
    Planck, Max (1912). “Ü ber die Begründung des Gesetzes der Schwarzen Strahlung”, Annalen der Physik 37: 642–656.Google Scholar
  11. 11.
    Jammer, Max (1966). The Conceptual Development of Quantum Mechanics. New York: McGraw-Hill.Google Scholar
  12. 12.
    Mehra, Jagdesh and Rechenberg, Helmut (1982). The Historical Development of Quantum Theory, Vol. 1, The Quantum Theory of Planck, Einstein, Bohr and Sommerfeld: Its Foundation and the Rise of Its Difficulties 1900–1925. New York/Heidelberg/Berlin: Springer-Verlag.Google Scholar
  13. 13.
    Bohr, Niels (1981). Collected Works Vol. 2. Work on Atomic Physics (1912–1917), ed. Ulrich Hoyer. Amsterdam: North-Holland/Elsevier.Google Scholar
  14. 14.
    Bohr, Niels (1918). “The quantum theory of line spectra. Part I—On the general theory”, Det Kongelige Danske Videnskabernes Selskab. Skrifter. Naturvidenskabelig og Matematisk Afdeling 8(4): 5–36. Reprinted in [18], 71–102.MathSciNetGoogle Scholar
  15. 15.
    Klein, Oskar (1967). “Glimpses of Niels Bohr as a Scientist and Thinker”. In [37] 74–93.Google Scholar
  16. 16.
    Klein, Martin (1970). “The first phase of the Bohr–Einstein dialogue”, Historical Studies in the Physical Sciences, 2: 1–39.Google Scholar
  17. 17.
    Bohr, Niels (1984). Collected Works Vol. 5. The Emergence of Quantum Mechanics (mainly 1924–1926), ed. Klaus Stolzenberg. Amsterdam: North-Holland/Elsevier.Google Scholar
  18. 18.
    Bohr, Niels (1976). Collected Works Vol. 3. The Correspondence Principle (1918–1923), ed. J. Rud Nielsen. Amsterdam: North-Holland/Elsevier.Google Scholar
  19. 19.
    Bohr, Niels (1924). “The application of the quantum theory to atomic structure, Part I, The fundamental postulates”, Chapter III, “On the formal nature of the quantum theory”, Proceedings of the Cambridge Philosophical Society 22, Supplement: 1–42.CrossRefGoogle Scholar
  20. 20.
    Kramers, H. A. and Holst, Helge (1923). “The Atom and the Bohr Theory of Its Structure”. New York: Knopf.Google Scholar
  21. 21.
    Bohr, Niels, Kramers, Hendrik A., and Slater, John C. (1924). “The quantum theory of radiation”, Philosophical Magazine 47: 785–802. Reprinted in Bohr 1984, 101–118.Google Scholar
  22. 22.
    Einstein, Albert (1921). “Ü ber ein den Elementarprozess der Lichtemission betreffendes Experiment”, Sitzungsberichte der Preussischen Akademie der Wissenschaften (physik.-math. Klasse) [n.v]: 882–883.Google Scholar
  23. 23.
    Einstein, Albert (1926). “Vorschlag zu einem die Natur des elementaren Strahlungs-Emissionsprozesses betreffenden Experiment”, Die Naturwissenschaften 14: 300–301.CrossRefGoogle Scholar
  24. 24.
    Einstein, Albert (1922). “Theorie der Lichtfortpflanzung in dispergierenden Medien”, Sitzungsberichte der Preussischen Akademie der Wissenschaften (physik.-math. Klasse) [n.v]: 18–22.Google Scholar
  25. 25.
    Einstein, Albert (1926). “Ü ber die Interferenzeigenschaften des durch Kanalstrahlen emit-tierten Lichtes”, Sitzungsberichte der Preussischen Akademie der Wissenschaften (physik.-math. Klasse) [n.v]: 334–340.Google Scholar
  26. 26.
    Kalckar, Jørgen (1985). Introduction. In [27], 7–51.Google Scholar
  27. 27.
    Bohr, Niels (1985). Collected Works. Vol. 6. Foundations of Quantum Physics I. (1926–1932), ed. Jørgen Kalckar. Amsterdam: North-Holland/Elsevier.Google Scholar
  28. 28.
    Stachel, John (1986). “Einstein and the Quantum”, in Robert S. Colodny, ed. From Quarks to Quasars: Philosophical Problems of Modern Physics. Pittsburgh: University of Pittsburgh Press, 367–402. Reprinted in John Stachel, Einstein From ‘B’ to ‘Z.’ Boston/Basel/Berlin: Birkhäuser, 2002, 367–402.Google Scholar
  29. 29.
    Stachel, John (1997). “Feynman Paths and Quantum Entanglement: Is There Any More to the Mystery?” In Robert S. Cohen, Michael Horne and John Stachel, eds., Potentiality, Entanglement and Passion-at-a-Distance/Quantum Mechanical Studies for Abner Shimony, Volume Two. Dordrecht/Boston/London: Kluwer Academic, 245–256.Google Scholar
  30. 30.
    Bohr, Niels (1934). Atomic Theory and the Description of Nature. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  31. 31.
    Bohr, Niels (1932). “Chemistry and the quantum theory of atomic constitution”, The Journal of the Chemical Society: 349–384. Reprinted in [27], 373–408.Google Scholar
  32. 32.
    Bohr, Niels (1931). “Maxwell and modern theoretical physics”, Nature (Suppl.) 12: 691–693. Reprinted in [27], 359–360.CrossRefADSGoogle Scholar
  33. 33.
    Bohr, Niels and Rosenfeld, Leon (1933). “Zur Frage der Messbarkeit der elektromagnetischen Feldgrössen”, Det Kongelige Danske Videnskabernes Selskab. Skrifter. Naturvidenskabelig og Matematisk Afdeling 12(8). Reprinted in [36], 57–121.Google Scholar
  34. 34.
    Rosenfeld, Leon (1979). Selected Papers, eds. Robert S. Cohen and John Stachel. Dordrecht/ Boston/London: D. Reidel.Google Scholar
  35. 35.
    Bohr, Niels (1938). “The causality problem in atomic physics”. In [38], 11–30. Reprinted in [36], pp. 303–322.Google Scholar
  36. 36.
    Bohr, Niels (1996). Collected Works. Vol. 7: Foundations of Quantum Physics II (1933–1958), ed. Jørgen Kalckar. Amsterdam: North-Holland/Elsevier.Google Scholar
  37. 37.
    Rozental, Stefan, ed. (1967). “Niels Bohr:His Life and Work as Seen by His Friends and Contemporaries”. Amsterdam: North-Holland.Google Scholar
  38. 38.
    International Institute of Intellectual Cooperation (1939). New Theories in Physics/ Conference Organized in Collaboration with the International Union of Physics and the Polish Intellectual Co-operation Committee/Warsaw, May 30th–June 3rd 1938. Paris: International Institute of Intellectual Co-operation.Google Scholar

Copyright information

© Springer Science+Business Media B.V 2009

Authors and Affiliations

  • John Stachel

There are no affiliations available

Personalised recommendations