Skip to main content

Part of the book series: The Western Ontario Series in Philosophy of Science ((WONS,volume 73))

I review 10 problems associated with the dynamical wave function collapse program, which were described in the first of these two papers. Five of these, the interaction, preferred basis, trigger, symmetry and superluminal problems, were shown there to have been resolved. In this volume in honor of Abner Shimony, I discuss the five remaining problems, tails, conservation law, experimental, relativity, legitimization. Particular emphasis is given to the tails problem, first raised by Abner. The discussion of legitimization contains a new argument, that the energy density of the fluctuating field which causes collapse should exert a gravitational force. This force can be repulsive, since this energy density can be negative. Speculative illustrations of cosmological implications are offered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Pearle, “How Stands Collapse I,” J. Phys. A: Math. Theor. 40, 3189 (2007).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. P. Pearle, Experimental Metaphysics: Quantum Mechanical Studies for Abner Shimony, R. S. Cohen, M. Horne and J. Stachel, eds. (Kluwer, Dordrecht, 1997), p. 143.

    Google Scholar 

  3. J. S. Bell in Sixty-Two Years of Uncertainty, A. I. Miller, ed. (Plenum, New York, 1990), p. 17.

    Google Scholar 

  4. P. Pearle, Phys. Rev. A 39, 2277 (1989).

    Article  ADS  Google Scholar 

  5. G. C. Ghirardi, P. Pearle and A. Rimini, Phys. Rev. A 42, 78 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  6. G. C. Ghirardi, A. Rimini and T. Weber, Phys. Rev. D 34,470 (1986); Phys. Rev. D 36, 3287 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  7. B. Collett and P. Pearle, Found. Phys. 33, 1495 (2003).

    Article  MathSciNet  Google Scholar 

  8. S. L. Adler, “Lower and Upper Bounds on CSL Parameters from Latent Image Formation and IGM Heating”: quant-ph/0605072, J. Phys. A: Math. Theor. 40, 2935 (2007).

    Article  MATH  ADS  Google Scholar 

  9. P. Pearle, Phys. Rev. D 13, 857 (1976); Int'l. J. Theor. Phys. 18, 489 (1979); Found. Phys. 12, 249 (1982); in S. Diner, D. Fargue, G. Lochat and F. Selleri, eds., The Wave-Particle Dualism. (D. ReIDel, Dordrecht, 1984); Phys. Rev. D 29, 235 (1984); Phys. Rev. Lett. 53, 1775 (1984); J. Stat. Phys. 41, 719 (1985); P. Pearle, Phys. Rev. D33, 2240 (1986); in D. Greenberger, ed., New Techniques and IDeas in Quantum Measurement Theory, p. 457 (New York Academy of Sciences, Vol. 480, 1986), p. 539.

    Article  MathSciNet  ADS  Google Scholar 

  10. N. Gisin, Phys. Rev. Lett. 52, 1657 (1984); Phys. Rev. Lett. 53, 1776 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  11. C. Dove and E. J. Squires, Found. Phys. 25, 1267 (1995) found a hitting process which preserves symmetry. See also R. Tumulka, Proc. Roy. Soc. A462, 1897 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Shimony in PSA 1990, Vol. 2, A. Fine, M. Forbes and L. Wessels, eds. (Philosophy of Science Association, East Lansing, 1991), p. 17.

    Google Scholar 

  13. G. C. Ghirardi and P. Pearle in PSA 1990, Vol. 2, A. Fine, M. Forbes and L. Wessels, eds. (Philosophy of Science Association, East Lansing, 1991), pp. 19, 35.

    Google Scholar 

  14. G. C. Ghirardi and T. Weber in R. S. Cohen, M. Horne and J. Stachel, eds., Potentiality, Entanglement and Passion-at-a-Distance, Quantum Mechanical Studies for Abner Shimony, Vo l. 2. (Kluwer, Dordrecht, 1997), p. 89. See also G. C. Ghirardi, R. Grassi and F. Benatti, Found. Phys. 20, 1271 (1990).

    Google Scholar 

  15. P. Pearle in Experimental Metaphysics, Quantum Mechanical Studies for Abner Shimony, Vol. 1, R. S. Cohen, M. Horne and J. Stachel, eds. (Kluwer, Dordrecht, 1997), p. 143.

    Google Scholar 

  16. S. Sarkar in Experimental Metaphysics, Quantum Mechanical Studies for Abner Shimony, Vol. 1, R. S. Cohen, M. Horne and J. Stachel, eds. (Kluwer, Dordrecht, 1997), p. 157.

    Google Scholar 

  17. D. Z. Albert and B. Loewer in R. Clifton, ed., Perspectives on Quantum Reality (Kluwer, Dordrecht, 1996), p. 81.

    Google Scholar 

  18. H. P. Stapp, Can. J. Phys. 80, 1043 (2002) and quant-ph 0110148.

    Article  ADS  Google Scholar 

  19. P. Pearle, Phys. Rev. 35, 742 (1967).

    Google Scholar 

  20. C. A. Fuchs and A. Peres, Phys. Today,70, 3 (2000).

    Google Scholar 

  21. E. Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik”, Naturwissenschaften 23: pp. 807–812; 823–828; 844–849 (1935). See the translation by J. D. Trimmer in J. A. Wheeler and W. H. Zurek, eds., Quantum Theory and Measurement (Princeton University Press, New Jersey, 1983).

    Article  ADS  Google Scholar 

  22. L. Ballentine, Quantum mechanics. A Modern Development (World Scientific, Singapore, 1998).

    MATH  Google Scholar 

  23. R. Omnès, Quantum Philosophy (Princeton University Press, Princeton, 1999), and references therein to work by R. B. Griffiths, M. Gell-Mann and J. Hartle.

    Google Scholar 

  24. J. Surowiecki, New Yorker, p. 40 (July 10 &17, 2006).

    Google Scholar 

  25. P. Pearle, Phys. Rev. D 29, 235 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Zeilinger in Quantum Concepts in Space and Time, R. Penrose and C. J. Isham eds, (Clarendon, Oxford, 1986), p. 16.

    Google Scholar 

  27. O. Nairz, M. Arndt and A. Zeilinger, Am. J. Phys. 71, 319 (2003).

    Article  ADS  Google Scholar 

  28. W. Marshall, C. Simon, R. Penrose and D. Bouwmeester, Phys. Rev. Lett. 91, 130401 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Bassi, E. Ippoliti and S. l. Adler, Phys. Rev. Lett. 94, 030401 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  30. P. Pearle and E. Squires, Phys. Rev. Lett. 73, 1 (1994).

    Article  ADS  Google Scholar 

  31. E. Garcia, Phys. Rev. D 51, 1458 (1995).

    Article  ADS  Google Scholar 

  32. B. Collett, P. Pearle, F. Avignone and S. Nussinov, Found. Phys. 25, 1399 (1995): P. Pearle, J. Ring, J. I. Collar and F. T. Avignone, Found. Phys. 29, 465 (1999).

    Article  ADS  Google Scholar 

  33. SNO collaboration, Phys. Rev. Lett. 92, 181301 (2004).

    Article  Google Scholar 

  34. G. Jones, P. Pearle and J. Ring, Found. Phys. 34, 1467 (2004).

    Article  ADS  Google Scholar 

  35. F. Karolyhazy, Nuovo Cimento 42A, 1506 (1966) presented a theory of collapse engendered by phase decoherence induced by metric fluctuations. As is the case with CSL, random walk of a small object is predicted by this theory, and Karolyhazy suggested testing it by looking for such motion.

    Google Scholar 

  36. G. Gabrielse et al., Phys. Rev. Lett. 65, 1317 (1990).

    Article  ADS  Google Scholar 

  37. P. Pearle, Phys. Rev. A 48, 913 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  38. P. Pearle in D. H. Feng and B. L. Hu, eds., Quantum Classical Correspondence: Proceedings of the 4th Drexel Conference on Quantum Nonintegrability (International Press, Singapore, 1997), p. 69.

    Google Scholar 

  39. P. Pearle in F. Pettruccione and H. P. Breuer, eds., Open Systems and Measurement in Rela-tivistic Quantum Theory (Springer, HeIDelberg, 1999).

    Google Scholar 

  40. P. Pearle, Phys. Rev. A 72, 022112 (2005), p.195.

    Article  MathSciNet  ADS  Google Scholar 

  41. A. Bassi, E. Ippoliti and B. Vacchini, J. Phys. A: Math-Gen 38, 8017 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. P. Pearle in A.I. Miller, ed., Sixty-Two Years of Uncertainty (Plenum, New York, 1990), p. 193.

    Google Scholar 

  43. G. Ghirardi, R. Grassi and P. Pearle, Found. Phys. 20, 1271 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  44. P. Cvitanovich, I. Percival and A. Wirzba eds., Quantum Chaos-Quantum Measurement, (Kluwer, Dordrecht, 1992), p. 283.

    Google Scholar 

  45. N. Dowrick, Path Integrals and the GRW Model (preprint, Oxford, 1993).

    Google Scholar 

  46. P. Pearle, Phys. Rev. A 59, 80 (1999).

    Article  MathSciNet  ADS  Google Scholar 

  47. O. Nicrosini and A. Rimini, Found. Phys. 33, 1061 (2003).

    Article  MathSciNet  Google Scholar 

  48. P. Pearle in Stochastic Evolution of Quantum States in Open Systems and in Measurement Processes, L. Diosi and B. Lukacs, eds. (World Scientific, Singapore, 1994), p. 79.

    Google Scholar 

  49. P. Pearle in R. Clifton, ed., Perspectives on Quantum Reality (Kluwer, Dordrecht, 1996), p. 93.

    Google Scholar 

  50. P. Pearle, Phys. Rev. A 71, 032101 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  51. L. Diosi, Phys. Rev. A 40, 1165 (1989). See also the discussion and modification in G. C. Ghirardi, R. Grassi and A. Rimini, Phys. Rev. A 42, 1057 (1990).

    Article  ADS  Google Scholar 

  52. R. Penrose, Gen. Rel. Grav. 28, 581 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  53. P. Pearle and E. Squires, Found. Phys. 26, 291 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  54. Y. Aharonov and D. Z. Albert, Phys. Rev. D 29, 228 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  55. There is a connection to an interesting and imaginative piece of unestablished physics. S. L. Adler, Quantum theory as an emergent phenomenon (CambrIDge Univversity Press, CambrIDge 2004), argues that the formalism of quantum theory can be derived from statistical mechanical equilibrium behavior of a classical dynamics of certain matrix variables, and that the fluctuations from equilibrium can give rise to CSL-type collapse behavior. For a review which summarizes this argument, see P. Pearle, Studies in History and Philosophy of Modern Physics 36, 716 (2005).

    Google Scholar 

  56. A. G. Riess et al., Astr. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  57. D. N. Spergel et al., Ap. J. Suppl. 170, 377 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Pearle .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Pearle, P. (2009). How Stands Collapse II. In: Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle. The Western Ontario Series in Philosophy of Science, vol 73. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9107-0_14

Download citation

Publish with us

Policies and ethics