Skip to main content

Part of the book series: The Western Ontario Series in Philosophy of Science ((WONS,volume 73))

  • 1381 Accesses

One of the most surprising consequences of quantum mechanics is the entanglement of two or more distant particles. In an entangled EPR two-particle system, the value of the momentum (position) for neither single subsystem is determined. However, if one of the subsystems is measured to have a certain momentum(position), the other subsystem is determined to have a unique corresponding value, despite the distance between them. This peculiar behavior of an entangled quantum system has been observed experimentally, such as in two-photon temporal correlation measurements and in two-photon imaging experiments. This article addresses the fundamental concerns behind these experimental observations and explores the nonclassical nature of two-photon superposition by emphasizing the physics of 2 ٯ 1+1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 35, 777 (1935).

    Article  ADS  Google Scholar 

  2. N. Bohr, Phys. Rev. 48, 696 (1935).

    Article  MATH  ADS  Google Scholar 

  3. J. Wheeler, “The ‘Past’ and the ‘Delayed-Choice Double-Slit Experiment’,” in A.R. Maslow, ed., Mathematical Foundations of Quantum Theory, Academic Press, 1978, pp. 9–48.

    Google Scholar 

  4. A. Pais, ‘Subtle is the lord…’ The Science and the Life of Albert Einstein, Oxford University Press, Oxford and New York, 1982.

    Google Scholar 

  5. M. D'Angelo, Y.H. Kim, S.P. Kulik, and Y.H. Shih, Phys. Rev. Lett. 92, 233601 (2004).

    Article  ADS  Google Scholar 

  6. D. Bohm, Phys. Rev. 85, 166 180 (1952); D. Bohm, Causality and Chance in Modern Physics, D. Van Nostrand Co., Princeton, 1957; D. Bohm and Y. Aharonov, Phys. Rev. 108, 1070 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  7. J.S. Bell, Physics 1, 195 (1964); Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, New York, 1987.

    Google Scholar 

  8. J.F. Clauser and A. Shimony, Rep. Prog. Phys. 41, 1883 (1978).

    Article  ADS  Google Scholar 

  9. A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett., 47, 460 (1981); A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett., 49, 91 (1981); A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett., 49, 1804 (1981).

    Article  ADS  Google Scholar 

  10. Y.H. Shih and C.O. Alley, Phys. Rev. Lett. 61, 2921 (1988); Z.Y. Ou and L. Mandel, Phys. Rev. Lett. 62, 50 (1988); T.E. Kiess, Y.H. Shih, A.V. Sergienko, and C.O. Alley, Phys. Rev. Lett. 71, 3893 (1993); P.G. Kwiat, et al., Phys. Rev. Lett. 75, 4337 (1995).

    Article  ADS  Google Scholar 

  11. E. Schrödinger, Naturwissenschaften 23, 807, 823, 844 (1935); English translations appear in ref. [3].

    Article  ADS  Google Scholar 

  12. D.N. Klyshko, Photon and Nonlinear Optics, Gordon and Breach Science, New York, 1988.

    Google Scholar 

  13. Y.H. Shih, IEEE J. Selected Topics in Quantum Electronics 9, 1455 (2003).

    Article  Google Scholar 

  14. A. Yariv, Quantum Electronics, Wiley, New York (1989).

    Google Scholar 

  15. R.J. Glauber, Phys. Rev. 130, 2529 (1963); Phys. Rev. 131, 2766 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  16. M.H. Rubin, Phys. Rev. A 54, 5349 (1996).

    Article  ADS  Google Scholar 

  17. J.W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York, NY, 1968.

    Google Scholar 

  18. Y.H. Shih, IEEE Journal of Selected Topics in Quantum Electronics, 13, 1016 (2007).

    Article  Google Scholar 

  19. This effect was first proposed for lithography application, namely quantum lithography, by A.N. Boto, et al., Phys. Rev. Lett. 85, 2733 (2000).

    Article  ADS  Google Scholar 

  20. M. D'Angelo, M.V. Chekhova, and Y.H. Shih, Phys. Rev. Lett. 87, 013603 (2001). Note: Due to the lack of a two-photon absorber, the joint-detection measurement in this experiment was on the Fourier transform plane rather than on the image plane. It might be helpful to point out that the observation of sub-wavelength interference in a Mach Zehnder type interferometer cannot lead to sub-diffraction-limited images, except a set of double modulated interference pattern. The Fourier transform argument works only for imaging setups as is in this experiment.

    Article  ADS  Google Scholar 

  21. T.B. Pittman, Y.H. Shih, D.V. Strekalov, and A.V. Sergienko, Phys. Rev. A 52, R3429 (1995).

    Article  ADS  Google Scholar 

  22. D.N. Klyshko, Usp. Fiz. Nauk, 154, 133 (1988); Sov. Phys. Usp 31, 74 (1988); Phys. Lett. A 132, 299 (1988).

    Article  Google Scholar 

  23. M. D'Angelo, A. Valencia, M.H. Rubin, and Y.H. Shih, Phys. Rev. A 72, 013810 (2005).

    Article  ADS  Google Scholar 

  24. D.V. Strekalov, A.V. Sergienko, D.N. Klyshko and Y.H. Shih, Phys. Rev. Lett. 74, 3600 (1995).

    Article  ADS  Google Scholar 

  25. K.R. Popper, in Open Questions in Quantum Physics, G. Tarozzi and A. van der Merwe, eds., D. Reidel Publishing Co., Dordrecht, 1985; K.R. Popper, in Determinism in Physics, E.I. Bitsakis and N. Tambakis, eds., Gutenberg Publishing, Athens, 1985.

    Google Scholar 

  26. K.R. Popper, Naturwissenschaften 22, 807 (1934); K.R. Popper, Quantum Theory and the Schism in Physics, Hutchinson, London, 1982.

    Article  ADS  Google Scholar 

  27. For criticisms of Popper's experiment, see for example, D. Bedford and F. Selleri, Lett. Nuovo Cimento, 42, 325 (1985); M.J. Collett and R. Loudon, Nature 326, 671 (1987); A. Sudberg, Philosophy of Science, 52, 470 (1985); A. Sudberg, in A. van der Merwe, et al., eds., Micro-physical Reality, Kluwer Academic, Dordrecht, 1988; M. Horne, Experimental Metaphysics, R.S. Cohen, M. Horne and J. Stachel, eds., Kluwer Academic, Dordrecht, 1997.

    Article  Google Scholar 

  28. Y.H. Kim and Y.H. Shih, Found. Phys., 29, 1849 (1999).

    Article  Google Scholar 

  29. D.V. Strekalov, Y.H. Kim, and Y.H. Shih, Phys. Rev. A 60, 2685 (1999).

    Article  ADS  Google Scholar 

  30. C.E. Shannon and W. Weaver, The Mathematical Theory of Communication, University of Illinois Press, Urbana, 1949.

    MATH  Google Scholar 

  31. N.J. Cerf and C. Adami, Phys. Rev. Lett. 79, 5194 (1997).

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Shih, Y. (2009). The Physics of 2 ≠ 1+1. In: Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle. The Western Ontario Series in Philosophy of Science, vol 73. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9107-0_11

Download citation

Publish with us

Policies and ethics