Advertisement

Impact of Eel Viruses on Recruitment of European Eel

  • Olga Haenen
  • Vincent van Ginneken
  • Marc Engelsma
  • Guido van den Thillart
Part of the Fish & Fisheries Series book series (FIFI, volume 30)

Eels have an uncommon catadromic life cycle with exceptional migratory patterns to their spawning grounds several thousand kilometres away: the European eel (Anguilla anguilla) travels over 5,500 km to the Sargasso Sea (Schmidt 1923; McCleave and Kleckner 1987; Tesch 1982; Tesch and Wegner 1990); the American eel (A. rostrata) migrates over 4,000 km also to the Sargasso Sea (Castonguay and McCleave 1987; McCleave and Kleckner 1987; Tesch and Wegner 1990); the Australian eel (A. aus-tralis) travels over 5,000 km into the Pacific Ocean to spawn (Jellyman 1987); and the Japanese eel (A. japonica) travels over 4,000 km to an area near the Marianna Islands in the Philippines to spawn (Tsukamoto 1992). Evidently such long distance swimming will place those fishes under extra stress caused by the long starvation period, the high energy cost of the journey, and the many changes in the environment such as salt water, darkness, high pressure, and low temperatures, among other stress factors. Stress is often a basis for disease in eel, especially in intensive eel culture (Haenen and Engelsma, 2005 unpublished finding).

Nowadays, global transport of live fishes for aquaculture has facilitated the global spread of pathogens from diseased to healthy stocks. Within the last few decades, aquaculture has become an important production branch in our society. Its global production has more than doubled between 1986 and 1996 in tonnage and value, and over one quarter of human fish consumption at world scale is now produced in aquaculture (Naylor et al. 2000). The Netherlands is one of the leading eel producing & trading countries (Heinsbroek and Kamstra 1995). Blanc (1997) showed that nearly 100 pathogens have been introduced into European water bodies since the introduction of aquaculture. Worldwide many diseases are known in both wild and cultured eel. Parasites, for example trematodes, Anguillicola crassus(nematode), and Myxidium giardi (myxosporean)occur naturally in wild eel populations, mostly in low numbers, without causing mortality (Køie 1988; Van Banning and Haenen 1990; Borgsteede et al. 1999). However, under culture conditions, with eels kept in high densities, they may be harmful. Eel pathogenic bacteria like Vibrio vulnificus, Vibrio anguillarum, Pseudomonas anguillisepticaand Edwardsiella tardamay also cause disease, especially when a stress factor is involved or when the eel is injured (Veenstra et al. 1993; Austin and Austin 1999; Haenen and Davidse 2001). As far as we know, the clinical signs are often more severe under culture conditions compared to in the wild.

Keywords

Vibrio Anguillarum Unpublished Finding Anguilla Japonica Fish Pathol European Water Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin B, Austin DA (1999) In: Bacterial Fish Pathogens: Disease of farmed and wild fish, 3rd (revised) edition. Praxis Publishing, Chichester, UK, 457 pp.Google Scholar
  2. Békési L, Horváth I, Kovács-Gayer E, Csaba G. (1986) Demonstration of herpesvirus like particles in skin lesions of European eel (Anguilla anguilla). J. Appl. Ichthyol. 4, 190–192 (short communication)CrossRefGoogle Scholar
  3. Blanc G (1997) L'introduction des agents pathogènes dans les écosystèmes aquatiques: aspects théoriques et réalités. Bulletin Français de la pêche et de la piscine 344/345, 489–513.Google Scholar
  4. Borgsteede FHM, Haenen OLM, De Bree J, Lisitsina, OI (1999) Parasitic infections of European eel (Anguilla anguilla L.) in The Netherlands. Helminthologia 36(4), 251–260.Google Scholar
  5. Bruggeman WA (1983) Bioaccumulation of polychlorobiphenyls and related hydrophobic chemicals in fish. Rijkswaterstaat. Rijksinstituut voor Zuivering Van Afvalwater, Lelystad.Google Scholar
  6. Bullock G, Rucker RR, Amend D, Wolf K, Stuckey HM (1976) Infectious pancreatic necrosis: transmission with iodine-treated and nontreated eggs of brook trout (Salvenius fontinalis). J. Res. Board Can. 33, 1197–1198.Google Scholar
  7. Castonguay M, McCleave JD (1987) Vertical distributions, diel and ontogenetic vertical migrations and net avoidance of leptocephali of Anguilla and other common species in the Sargasso Sea. J. Plankton Res. 9, 195–214.CrossRefGoogle Scholar
  8. Castric J, Chastel C (1980) Isolation and characterization attempts of three viruses from European eel, Anguilla anguilla: preliminary results. Ann. Virol.. 131E, 435–448.Google Scholar
  9. Castric J, Rasschaert D, Bernard J (1984) Evidence for Lyssaviruses among rhabdovirus isolated from European eel, Anguilla anguilla. Ann. Virol. 135E, 33–35.Google Scholar
  10. Chang PH, Pan YH, Wu CM, Kuo ST, Chung HY (2002) Isolation and molecular characterization of herpesvirus from cultured European eels Anguilla anguilla in Taiwan. Dis. Aquat. Organ. 50, 111–118.PubMedCrossRefGoogle Scholar
  11. Chen SN, Ueno Y, Kou G-H (1982) A cell line derived from Japanese eel (Anguilla japonica) kidney. Proc. Natl. Sci. Counc. R.O.C. 6, 93–100.Google Scholar
  12. Davidse A, Haenen OLM, Dijkstra SG, Van Nieuwstadt AP, Van der Vorst TJK, Wagenaar F, Wellenberg GJ (1999) First Isolation of Herpesvirus of Eel (Herpesvirus anguillae) in diseased European eel (Anguilla anguilla L.) in Europe. Bull. Eur. Ass. Fish. Pathol. 19, 137–141.Google Scholar
  13. Egusa S (1970) Branchionephritis prevailed among eel populations in farm-pond in the warm water 1969–1970. Fish Pathol. 5, 51–56 (in Japanese).Google Scholar
  14. Egusa S (1976) Some bacterial diseases of freshwater fishes in Japan. Fish Pathol. 10, 103–114.Google Scholar
  15. Gylfe A, Bergstrom S, Lundstrom J, Olsen B (2000) Reactivation of Borellia infection in birds. Nature 403, 724–725.PubMedCrossRefGoogle Scholar
  16. Haenen OLM, Dijkstra SG, Van Tulden PW, Davidse A, Van Nieuwstadt AP, Wagenaar F, Wellenberg GJ (2002) Herpesvirus anguillae (HVA) isolations from disease outbreaks in cultured European eel, Anguilla anguilla in The Netherlands since 1996. Bull. Euro. Assoc. Fish Pathol. 22(4), 247–257.Google Scholar
  17. Haenen OLM, Davidse A (2001) First isolation and pathogenicity studies with Pseudomonas anguilliseptica from diseased European eel Anguilla anguilla (L.) in The Netherlands. Aquaculture 196: 27–36.CrossRefGoogle Scholar
  18. Haro AJ (1991) Thermal preferenda and behaviour of Atlantic eels (genus Anguilla) in relation to their spawning migration. Environ. Biol. Fishes 31, 171–184.CrossRefGoogle Scholar
  19. Heinsbroek LTN, Kamstra A (1995) The River Eels, Chapter 6: In: Nash CE, Novotny AJ (eds), Production of Aquatic Animals. Elsevier, Amsterdam, pp. 109–131.Google Scholar
  20. Hill BJ, Williams RF, Smale CJ, Underwood BO, Brown F (1980) Physico-chemical and serological characterization of two rhabdoviruses isolated from eels. Intervirology 14, 208–212.PubMedCrossRefGoogle Scholar
  21. Jellyman D (1987) Review of the marine life history of Australasian temperate species of Anguilla. Am. Fish. Soc. Symp. 1, 276–285.Google Scholar
  22. Jørgensen PEV, Castric J, Hill B, Ljungberg O, De Kinkelin P (1994) The occurrence of virus infections in elvers and eels (Anguilla anguilla) in Europe with particular reference to VHSV and IHNV. Aquaculture. 123, 11–19.CrossRefGoogle Scholar
  23. Kleckner RC, McCleave JD (1982) Entry of migrating American eel leptocephali into the gulf stream system. Helgolander Meeresuntersuchungen 35, 329–339.CrossRefGoogle Scholar
  24. Kobayashi T, Miyazaki T (1997) Characterization and pathogenicity of a herpesvirus isolated from cutaneous lesion in Japanese eel, Anguilla japonica. Fish Pathol. 32(2), 6, 89–95.Google Scholar
  25. Kobayashi T, Miyazaki T (1996). Rhabdoviral dermatitis in Japanese eel, Anguilla japonica. Fish Pathol. 31, 183–190.Google Scholar
  26. Køie M (1988) Parasites in eels, Anguilla anguilla (L.) from eutrophic Lake Estrum (Denmark). Acta Parasitol. Pol. 33, 89–100.Google Scholar
  27. Lee N-S, Kobayashi J, Miyazaki T (1999) Gill filament necrosis in farmed Japanese eels, Anguilla japonica (Temminck and Schlegel), infected with Herpesvirus anguillae. J. Fish Dis. 22, 457–463.CrossRefGoogle Scholar
  28. Lehmann J, Stürenberg F-J, Kullmann Y, Kilwinski J (2005) Umwelt- und Krankheitsbelsatungen der Aale in Nordrhein-Westfalen. LÖBF-Mitteilungen 2/05, 35–40.Google Scholar
  29. McCleave JD, Kleckner RC (1987) Distribution of leptocephali of the catadromous Anguilla species in the western Sargasso Sea in relation to water circulation and migration. Bull. Mar. Sci. 41, 789–806.Google Scholar
  30. Mulcahy D, Pascho RJ (1984) Adsorption to fish sperm of vertically transmitted fish viruses. Science 225, 333–335.PubMedCrossRefGoogle Scholar
  31. Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCC, Clay J, Folke C, Lubchenco J, Mooney H, Troell M (2000) Effect of aquaculture on world fish supplies. Nature 405, 1017–1024PubMedCrossRefGoogle Scholar
  32. Nishimura T, Toba M, Ban F, Okamoto N, Sano T (1981) Eel rhabdovirus, EVA, EVEX and their infectivity of fishes. Fish Pathol. 15, 173–184.Google Scholar
  33. Okamoto N, Sano T, Hedrick RP, Fryer JL (1983) Antigenic relationships of selected strains of infectious pancreatic necrosis and European eel virus. J. Fish Dis. 6, 19–25.CrossRefGoogle Scholar
  34. Sano M, Fukuda H, Sano T (1990) Isolation and characterization of a new herpesvirus from eel. In: Perkins TO, Cheng TC (eds), Pathology in Marine Science. Academic, New York, pp. 15–31.Google Scholar
  35. Sano T, Nishimura N, Okamoto N, Fukuda H (1977) Studies on viral diseases of Japanese fishes. VII. A rhabdovirus isolated from European eel, Anguilla anguilla. Bull. Jpn. Soc. Sci. Fisher. 43, 491–495.Google Scholar
  36. Sano T, Nishimura T, Okamoto N, Fukuda H (1976) Isolation of rhabdovirus from European eels (Anguilla anguilla) a Japanese port of entry. Fish Health News 5, 5–6.Google Scholar
  37. Sano T, Okamoto N, Nishimura T (1981) A new viral epizootic of Anguilla japonica Temminck and Schlegel. J. Fish Dis. 4, 127–139.CrossRefGoogle Scholar
  38. Sano T (1976) Viral diseases of cultured fishes in Japan. Fish Pathol. 19, 221–226.Google Scholar
  39. Schmidt, J. (1923) Breeding places and migration of the eel. Nature 111, 51–54.CrossRefGoogle Scholar
  40. Shchelkunov IS, Skurat EK, Sivolotskaya VA, Sapotko KV, Shimko VV, Linnik VYa (1989) Rhabdovirus anguilla in eel in the USSR and its pathogenicity for fish. Vopr. Virusisol. 34(1), 81–84. In Russian with English abstract.Google Scholar
  41. Smail DA, Munro ALS (2001) The virology of teleosts. In: Roberts RJ (ed), Fish Pathology, 3rd edition, WB Saunders, London, 472 p, 205.Google Scholar
  42. Sures, B.; Knopf, K. (2004) Individual and combined effects of cadmium and 3,3′,4,4′-5-pen- tachlorobiphenyl (PCB 126) on the humoral immune response in European eel (Anguilla anguilla) experimentally infected with larvae of Anguillicola crassus. Parasitology 128, 445–454.PubMedCrossRefGoogle Scholar
  43. Tesch, FW (1978) Telemetric observations on the spawning migration of the eel (Anguilla anguilla) west of the European continental shelf. Environ. Biol. Fish. 3, 203–209.CrossRefGoogle Scholar
  44. Tesch, FW (1982) The Sargasso Sea Eel Expedition 1979. Helgoländer Meeresunsters. 35, 263–277.CrossRefGoogle Scholar
  45. Tesch, FW (1989) Changes in swimming depth and direction of silver eels (Anguilla anguilla L.) from the continental shelf to the deep sea. Aquat. Living Resour. 2, 9–20.CrossRefGoogle Scholar
  46. Tesch, FW (2003) The Eel. Blackwell Science Ltd, Oxford, UK 5th Ed. 408p, 119–212.Google Scholar
  47. Tesch, FW, Wegner G (1990) The distribution of small larvae of Anguilla sp. related to hydrographic conditions 1981 between Bermuda and Puerto Rico. International Revue der gesamten Hydrobiologie 75, 845–858.Google Scholar
  48. Tsukamoto K (1992) Discovery of the spawning area for Japanese eel. Nature 356, 789–791.CrossRefGoogle Scholar
  49. Ueno Y, Shi J-W, Yoshida T, Kitao T, Sakai M, Chen S-N, Kou GH (1996) Biological and serological comparisons of eel herpesvirus in Formosa (EHVF) and herpevirus anguillae (HVA). J. Appl. Ichthyol. 12, 49–51.CrossRefGoogle Scholar
  50. Ueno Y, Kitao T, Chen S-N, Aoki T, Kou GH (1992) Characterization of a Herpes-like Virus isolated from cultured Japanese eels in Taiwan. Gyohyo Kenkyu 27, 7–17.Google Scholar
  51. Van Banning P, Haenen OLM (1990) Effects of the swimbladder nematode Anguillicola crassus in wild and farmed eel Anguilla anguilla. In: Perkins FO, Cheng TC (eds), Pathology in Marine Science. Academic, New York. Proceedings of the 3rd International Colloquium on Pathology in Marine Aquaculture, Gloucester Point, Virginia, October 2–6 1988, pp. 317–330.Google Scholar
  52. Van Ginneken V, Van Ballieux B, Willemze R, Coldenhoff K, Lentjes E, Antonissen E, Haenen O, Van den Thillart G (2005) Hematology patterns of migrating European eels and the role of EVEX virus. Comp. Biochem. Physiol., part C 140, 97–102.Google Scholar
  53. Van Ginneken V, Haenen O, Coldenhoff K, Willemze R, Antonissen E, Van Tulden P, Dijkstra S, Wagenaar F, Van den Thillart G (2004) Presence of virus infections in eel species from various geographic regions. Bull. Euro. Ass. Fish Pathol. 24(5), 268–272 (short communication).Google Scholar
  54. Van Nieuwstadt AP, Dijkstra SG, Haenen OLM (2001) Persistence of herpesvirus of eel Herpesvirus anguillae in farmed European eel Anguilla anguilla. Dis. Aquat. Organ. 45, 103–107.PubMedCrossRefGoogle Scholar
  55. Veenstra J, Rietra PJGM, Coster JM, Stoutenbeek CP, ter Laak EA, Haenen OLM, De Gier HHW, Dirks-Go S (1993) Human Vibrio vulnificus infections and environmental isolates in the Netherlands. Aquac. Fish. Manage. 24, 119–122.Google Scholar
  56. Wolf K (1988) Fish Viruses and Fish Viral Diseases. Cornell University Press, Ithaca, USA. Comstock Publishing Association, New York, 476 pp.Google Scholar
  57. Worthington LV (1959) The 18°C water in the Sargasso Sea. Deep Sea Res. 5, 297–305.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V 2009

Authors and Affiliations

  • Olga Haenen
    • 1
  • Vincent van Ginneken
    • 1
  • Marc Engelsma
    • 1
  • Guido van den Thillart
    • 2
  1. 1.National Reference Laboratory for Fish & Shellfish DiseasesAB LelystadThe Netherlands
  2. 2.Institute BiologyLeiden UniversityLeidenThe Netherlands

Personalised recommendations