Skip to main content

Part of the book series: IUTAM BookSeries ((IUTAMBOOK,volume 11))

  • 1206 Accesses

Abstract

In recent work, the author and co-workers have introduced and developed a new computational ductile fracture methodology. This approach accounts for certain types of initial and induced anisotropy, and has been further refined to account for coupling between void shape and the effects of anisotropy. The effectiveness of the method in capturing the link between microstructure and fracture properties is explored through a three-dimensional finite element analysis of ductile fracture in notched bars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Tvergaard. Int. J. Frac., 18:237–252, 1982.

    Google Scholar 

  2. C. Chu and A. Needleman. J. Eng. Mat. Tech., 102:249–256, 1980.

    Article  Google Scholar 

  3. V. Tvergaard and A. Needleman. Acta Metall., 32:157–169, 1984.

    Article  Google Scholar 

  4. A. L. Gurson. J. Eng. Mat. Tech., 99:2–15, 1977.

    Google Scholar 

  5. M. Gologanu, J.-B. Leblond, and J. Devaux. J. Mech. Phys. Solids, 41(11):1723–1754, 1993.

    Article  MATH  Google Scholar 

  6. M. Gologanu, J.-B. Leblond, G. Perrin, and J. Devaux. Recent extensions of Gurson’s model for porous ductile metals. In P. Suquet (Ed.), Continuum Micromechanics, CISM Lectures Series, pp. 61–130. Springer, New York, 1997.

    Google Scholar 

  7. A. A. Benzerga, J. Besson, and A. Pineau. J. Eng. Mat. Tech., 121:221–229, 1999.

    Article  Google Scholar 

  8. A. A. Benzerga and J. Besson. Eur. J. Mech., 20(3):397–434, 2001.

    Article  MATH  Google Scholar 

  9. J. Koplik and A. Needleman. Int. J. Solids Structures, 24(8):835–853, 1988.

    Article  Google Scholar 

  10. T. Pardoen and J. W. Hutchinson. J. Mech. Phys. Solids, 48:2467–2512, 2000.

    Article  MATH  Google Scholar 

  11. M. Gologanu. Etude de quelques problèmes de rupture ductile des métaux. PhD thesis, Université Paris 6, 1997.

    Google Scholar 

  12. A. A. Benzerga. Rupture ductile des tôles anisotropes. PhD thesis, Ecole Nationale Supérieure des Mines de Paris, 2000.

    Google Scholar 

  13. A. A. Benzerga. J. Mech. Phys. Solids, 50:1331–1362, 2002.

    Article  MATH  Google Scholar 

  14. T. Pardoen and J. W. Hutchinson. Acta Mater., 51:133–148, 2003.

    Article  Google Scholar 

  15. A. A. Benzerga, J. Besson, R. Batisse, and A. Pineau. Modelling Simul. Mater. Sci. Eng., 10:73–102, 2002.

    Article  Google Scholar 

  16. A. A. Benzerga, J. Besson, and A. Pineau. Acta Mater., 52:4639–4650, 2004.

    Article  Google Scholar 

  17. S. M. Keralavarma and A. A. Benzerga. An approximate yield criterion for anisotropic porous media, Comptes Rendus Mécanique, 2008 (to appear).

    Google Scholar 

  18. A. A. Benzerga, J. Besson, and A. Pineau. Acta Mater., 52:4623–4638, 2004.

    Article  Google Scholar 

  19. J. Besson and R. Foerch. Comput. Methods Appl. Mech. Engrg, 142:165–187, 1997.

    Article  MATH  Google Scholar 

  20. E. Riks. Int. J. Solids Structures, 15:529–551, 1979.

    Article  MATH  MathSciNet  Google Scholar 

  21. J.-B. Leblond. Mécanique de la rupture fragile et ductile. Hermes Science Publications, Lavoisier, 2003.

    MATH  Google Scholar 

  22. R. Hill. J. Mech. Phys. Solids, 15:79–95, 1967.

    Article  Google Scholar 

  23. J. Mandel. Contribution théorique à l’étude de l’écrouissage et des lois d’écoulement plastique. In Proceedings 11th International Congress on Applied Mechanics, pp. 502–509. Springer, Berlin, 1964.

    Google Scholar 

  24. P. Suquet. Plasticité et homogénéisation. Thèse d’Etat, Université Pierre et Marie Curie — Paris VI, 1982.

    Google Scholar 

  25. K. Decamp, L. Bauvineau, J. Besson, and A. Pineau. Int. J. Frac., 88:1–18, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this paper

Cite this paper

Benzerga, A.A. (2008). A Computational Methodology for Modeling Ductile Fracture. In: Reddy, B.D. (eds) IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media. IUTAM BookSeries, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9090-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9090-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9089-9

  • Online ISBN: 978-1-4020-9090-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics