Numerical Approximation Techniques for Rate-Independent Inelasticity

  • Alexander Mielke
Conference paper
Part of the IUTAM BookSeries book series (IUTAMBOOK, volume 11)

Abstract

Some recent advances in the numerical analysis of rate-independent material models are surveyed. A general concept of convergence of numerical approximations is discussed und the basis of Γ-convergence. It provides convergence of subsequences to true solutions under minimal regularity assumptions but gives no rates of convergence. Applications to elastoplasticity and damage are discussed.

Key words

rate-independent systems energetic solutions time-incremental minimization problems Γ-convergence damage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Alberty and C. Carstensen. Numerical analysis of time-depending primal elastoplasticity with hardening. SIAM J. Numer. Anal., 37, 1271–1294 (electronic), 2000.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    F. Auricchio, A. Mielke, and U. Stefanelli. A rate-independent model for the isothermal quasistatic evolution of shape-memory materials. M3 AS Math. Models Meth. Appl. Sci., 18(1), 125–164, 2008.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    G. Bouchitté, A. Mielke, and T. Roubíček. A complete-damage problem at small strains. Z. Angew. Math. Phys. (ZAMP), 2007.Google Scholar
  4. 4.
    G. Dal Maso and C. Zanini. Quasi-static crack growth for a cohesive zone model with prescribed crack path. Proc. R. Soc. Edinb., Sect. A, Math., 137(2), 253–279, 2007.MATHCrossRefGoogle Scholar
  5. 5.
    G. Dal Maso, G. Francfort, and R. Toader. Quasistatic crack growth in nonlinear elasticity. Arch. Rational Mech. Anal., 176, 165–225, 2005.MATHCrossRefGoogle Scholar
  6. 6.
    G. Francfort and A. Garroni. A variational view of partial brittle damage evolution. Arch. Rational Mech. Anal., 182, 125–152, 2006.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Frémond. Non-Smooth Thermomechanics. Springer, Berlin, 2002.MATHGoogle Scholar
  8. 8.
    M. Frémond and B. Nedjar. Damage, gradient of damage and principle of virtual power. Internat. J. Solids Structures, 33, 1083–1103, 1996.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    M. Frémond, K. Kuttler, B. Nedjar, and M. Shillor. One-dimensional models of damage. Adv. Math. Sci. Appl., 8, 541–570, 1998.MATHMathSciNetGoogle Scholar
  10. 10.
    B. Halphen and Q. S. Nguyen. Sur les matériaux standards généralisés. J. Mécanique, 14, 39–63, 1975.MATHGoogle Scholar
  11. 11.
    W. Han and B. D. Reddy. Plasticity (Mathematical Theory and Numerical Analysis), volume 9 of Interdisciplinary Applied Mathematics. Springer-Verlag, New York, 1999.Google Scholar
  12. 12.
    W. Han and B. D. Reddy. Convergence of approximations to the primal problem in plasticity under conditions of minimal regularity. Numer. Math., 87(2), 283–315, 2000.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    M. Kružík, A. Mielke, and T. Roubíček. Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAlNi. Meccanica, 40, 389–418, 2005.CrossRefMathSciNetGoogle Scholar
  14. 14.
    A. Mielke. Evolution in rate-independent systems (Ch. 6). In C. Dafermos and E. Feireisl (Eds.), Handbook of Differential Equations, Evolutionary Equations, vol. 2, Elsevier, Amsterdam, pp. 461–559, 2005.Google Scholar
  15. 15.
    A. Mielke and F. Rindler. Reverse approximation of energetic solutions to rate-independent processes. Nonl. Diff. Eqns. Appl. (NoDEA), 2007.Google Scholar
  16. 16.
    A. Mielke and T. Roubíček. Numerical approaches to rate-independent processes and applications in inelasticity. M2AN Math. Model. Numer. Anal., 2006. Submitted. WIAS Preprint 1169.Google Scholar
  17. 17.
    A. Mielke and T. Roubíček. Rate-independent damage processes in nonlinear elasticity. Math. Models Methods Appl. Sci., 16, 177–209, 2006.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    A. Mielke and F. Theil. A mathematical model for rate-independent phase transformations with hysteresis. In H.-D. Alber, R. Balean, and R. Farwig (Eds.), Proceedings of the Workshop on “Models of Continuum Mechanics in Analysis and Engineering”, Aachen. Shaker-Verlag, pp. 117–129, 1999.Google Scholar
  19. 19.
    A. Mielke and F. Theil. On rate—independent hysteresis models. Nonl. Diff. Eqns. Appl. (NoDEA), 11, 151–189, 2004.MATHMathSciNetGoogle Scholar
  20. 20.
    A. Mielke, L. Paoli, and A. Petrov. On the existence and approximation for a 3d model of thermally induced phase transformations in shape-memory alloys, 2008, in preparation.Google Scholar
  21. 21.
    A. Mielke, T. Roubíček, and U. Stefanelli. Γ-limits and relaxations for rate-independent evolutionary problems. Calc. War. Part. Diff. Equ., 31, 387–416, 2008.MATHCrossRefGoogle Scholar
  22. 22.
    A. Mielke, T. Roubíček, and J. Zeman. Complete damage in elastic and viscoelastic media and its energetics. Comput. Methods Appl. Mech. Engrg., 2007. Submitted. WIAS preprint 1285.Google Scholar
  23. 23.
    A. Mielke, F. Theil, and V. I. Levitas. A variational formulation of rate—independent phase transformations using an extremum principle. Arch. Rational Mech. Anal., 162, 137–177, 2002.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    M. Ortiz and E. Repetto. Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids, 47, 397–462, 1999.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    B. D. Reddy and J. B. Martin. Algorithms for the solution of internal variable problems in plasticity. Comput. Methods Appl. Mech. Engrg., 93(2), 253–273, 1991.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    B. D. Reddy, J. B. Martin, and T. B. Griffin. Extremal paths and holonomic constitutive laws in elastoplasticity. Quart. Appl. Math., 45(3), 487–502, 1987.MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V 2008

Authors and Affiliations

  • Alexander Mielke
    • 1
    • 2
  1. 1.Weierstraß-Institut für Angewandte Analysis und StochastikBerlin
  2. 2.Institut für MathematikHumboldt Universität zu BerlinBerlinGermany

Personalised recommendations