Skip to main content

Part of the book series: IUTAM BookSeries ((IUTAMBOOK,volume 11))

Abstract

In this note we announce the results obtained in [4] on local and global regularity for quasistatic initial-boundary value problems from viscoplasticity. The problems considered belong to a general class with monotone constitutive equations modelling inelastic materials showing kinematic hardening. A standard example is the Melan-Prager model. In [4] it is proved that the strain/stress/internal variable fields have H 1+1/3−δ/H 1/3−δ/H 1/3−δ regularity up to the boundary. We also show that in the case of generalized standard materials the same regularity can be obtained under weaker assumptions on the given data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.-D. Alber (1998) Materials with Memory — Initial-Boundary Value Problems for Constitutive Equations with Internal Variables. Lecture Notes in Mathematics, Vol. 1682, Springer, Berlin.

    MATH  Google Scholar 

  2. H.-D. Alber, K. Chelmiński (2004) Quasistatic problems in viscoplasticity theory. I. Models with linear hardening. In: I. Gohberg, A.F. dos Santos, F.O. Speck, F.S. Teixeira, W. Wendland (Eds.), Operator Theoretical Methods and Applications to Mathematical Physics, Vol. 147. Birkhäuser, Basel.

    Google Scholar 

  3. H.-D. Alber, K. Chelminski (2007) Math. Models Meth. Appl. Sci. 17(2): 189–213.

    Article  MATH  MathSciNet  Google Scholar 

  4. H.-D. Alber, S. Nesenenko (2008) Submitted.

    Google Scholar 

  5. A. Bensoussan, J. Frehse (1993) Asymptotic behaviour of Norton-Hoff’s law in plasticity theory and H 1 regularity. In: J.L. Lions (Ed.), Boundary Value Problems for Partial Differential Equations and Applications, Res. Notes Appl. Math., Vol. 29, Paris.

    Google Scholar 

  6. A. Bensoussan, J. Frehse (1996) Comment. Math. Univ. Carolinae 37(2): 285–304.

    MATH  MathSciNet  Google Scholar 

  7. A. Bensoussan, J. Frehse (2002) Regularity Results for Nonlinear Elliptic Systems and Applications, Applied Mathematical Sciences, Vol. 151. Springer, Berlin.

    MATH  Google Scholar 

  8. V.I. Burenkov (1998) Sobolev Spaces on Domains, Teubner-Texte zur Mathematik, Vol. 137. Teubner, Stuttgart/Leipzig.

    MATH  Google Scholar 

  9. C. Carstensen, S. Müller (2002) SIAM J. Math. Anal. 34(2): 495–509.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Demyanov (2007) Regularity of the stresses in Prandtl—Reuss perfect plasticity. Preprint, SISSA Trieste http://hdl.handle.net/1963/1963

  11. M. Fuchs, G. Seregin (2000) Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids, Lecture Notes in Mathematics, Vol. 1749. Springer, New York.

    MATH  Google Scholar 

  12. B. Halphen, Nguyen Quoc Son (1975) Sur les matériaux standards généralisés. J. Méc. 14: 39–63.

    MATH  Google Scholar 

  13. D. Knees (2004) Regularity results for quasilinear elliptic systems of power-law growth in nonsmooth domains. Boundary, transmission and crack problems. PhD thesis, Stuttgart

    Google Scholar 

  14. D. Knees (2006) Math. Methods. Appl. Sci. 29: 1363–1391.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Lemaitre, J.-L. Chaboche (1990) Mechanics of Solid Materials. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  16. J. Lubliner (1990) Plasticity Theory. Macmillan, New York.

    MATH  Google Scholar 

  17. P. Neff, D. Knees (2008) SIAM J. Math. Anal., to appear.

    Google Scholar 

  18. S. Nesenenko (2006) Homogenization and regularity in viscoplasticity. PhD Thesis, Darmstadt, Germany.

    Google Scholar 

  19. S. Nesenenko (2007) SIAM J. Math. Anal. 39(1): 236–262.

    Article  MATH  MathSciNet  Google Scholar 

  20. L. Prandtl (1925) Spannungsverteilung in plastischen Körpern. In Proc. Int. Congr. Appl. Mech. Delft 1924: 43–54 (Gesammelte Abhandlungen. Springer, Berlin (1961), 133–148).

    Google Scholar 

  21. S.I. Repin (1996) Math. Models Meth. Appl. Sci. 6(5): 587–604.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Reuss (1930) Z. Angew. Math. Mech. 10: 266–274.

    Article  MATH  Google Scholar 

  23. G.A. Seregin (1987) Differents. Uravn. 23: 1981–1991. English translation in Differential Equations 23 (1987), 1349–1358.

    MathSciNet  Google Scholar 

  24. G.A. Seregin (1988) A local Caccioppoli-type estimate for extremals of variational problems in Hencky plasticity. In: Some Applications of Functional Analysis to Problems of Mathematical Physics. Novosibirsk, pp. 127–138 [in Russian]

    Google Scholar 

  25. G.A. Seregin (1990) Algebra Analiz 2: 121–140.

    MATH  MathSciNet  Google Scholar 

  26. G.A. Seregin (1999) J. Math. Sci. 93(5): 779–783.

    Article  MathSciNet  Google Scholar 

  27. E. Showalter (1997) Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations. Math. Surveys Monogr., Vol. 49, AMS, Providence.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this paper

Cite this paper

Alber, HD., Nesenenko, S. (2008). Local and Global Regularity in Time Dependent Viscoplasticity. In: Reddy, B.D. (eds) IUTAM Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media. IUTAM BookSeries, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9090-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9090-5_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9089-9

  • Online ISBN: 978-1-4020-9090-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics