Skip to main content

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 13))

Abstract

Human Sequence Evaluation (HSE) concentrates on how to extract descriptions of human behaviour from videos in a restricted discourse domain, such as (i) pedestrians crossing inner-city roads where pedestrians appear approaching or waiting at stops of busses or trams, and (ii) humans in indoor worlds like an airport hall, a train station, or a lobby. These discourse domains allow exploring a coherent evaluation of human movements and facial expressions across a wide variation of scale. This general approach lends itself to various cognitive surveillance scenarios at varying degrees of resolution: from wide-field-of-view multiple-agent scenes, through to more specific inferences of emotional state that could be elicited from high resolution imagery of faces. The true challenge of HSE will consist of the development of a system facility which starts with basic knowledge about pedestrian behaviour in the chosen discourse domain, but could cluster evaluation results into semantically meaningful subsets of behaviours. The envisaged system will comprise an internal logic-based representation which enables it to comment each individual subset, giving natural language explanations of why the system has created the subset in question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Arens, H.-H. Nagel, “Behavioural knowledge representation for the understanding and creation of video sequences”, in: Proceedings of the 26th German Conference on Artificial Intelligence (KI-2003), Hamburg, Germany, LNAI 2821, Springer (2003) pp. 149–163.

    Google Scholar 

  2. J. Ben-Aire, Z. Wang, P. Pandit, S. Rajaram, “Human activity recognition using multidimensional indexing”, IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (8) (2002) 1091–1104.

    Article  Google Scholar 

  3. D. Bullock, J. Zelek, “Real-time tracking for visual interface applications in cluttered and occluding situations”, Image and Vision Computing 22 (12) (2004) 1083–1091.

    Article  Google Scholar 

  4. I. Cohen, N. Sebe, A. Garg, L. Chen, T.S. Huang, “Facial expression recognition from video sequences: temporal and static modeling”, Computer Vision and Image Understanding 91 (1–2) (2003) 160–187.

    Article  Google Scholar 

  5. D. Comaniciu, V. Ramesh, P. Meer, “Kernel-based object tracking”, IEEE Transactions on Pattern Analysis and Machine Intelligence 25 (5) (2003) 564–577.

    Article  Google Scholar 

  6. J. Deutscher, I. Reid, “Articulated body motion capture by stochastic search”, International Journal of Computer Vision 61 (2) (2005) 185–205.

    Article  Google Scholar 

  7. S. Dockstader, M. Berg, A. Tekalp, “Stochastic kinematic modeling and feature extraction for gait analysis”, IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (8) (2003) 962–976.

    MathSciNet  Google Scholar 

  8. A. Fod, M. Mataric, O. Jenkins, “Automated derivation of primitives for movement classification”, Autonomous Robots 12 (1) (2002) 39–54.

    Article  MATH  Google Scholar 

  9. A. Galata, N. Johnson, D. Hogg, “Learning variable-length markov models of behaviour”, Computer Vision and Image Understanding 81 (3) (2001) 398–413.

    Article  MATH  Google Scholar 

  10. D. Gavrila, L. Davis, “3D model-based tracking of humans in action: a multiview approach”, in: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR'96) (1996) pp. 73–80.

    Google Scholar 

  11. J. Gonzàlez, “Human Sequence Evaluation: The Key-Frame Approach”, PhD Thesis, Univer-sitat Autònoma de Barcelona, October 2004.

    Google Scholar 

  12. I. Haritaoglu, D. Harwood, L.S. Davis, “W 4: real-time surveillance of people and their activities”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (8) (2000) 809–830.

    Article  Google Scholar 

  13. S. Intille, A. Bobick, “Recognized planned, multiperson action”, International Journal of Computer Vision 81 (3) (2001) 414–445.

    MATH  Google Scholar 

  14. M. Isard, A. Blake, “Condensation: conditional density propagation for visual tracking”, International Journal of Computer Vision 29 (1) (1998) 5–28.

    Article  Google Scholar 

  15. I. Karaulova, P. Hall, A. Marshall, “Tracking people in three dimensions using a hierarchical model of dynamics”, Image and Vision Computing 20 (2002) 691–700.

    Article  Google Scholar 

  16. A. Kojima, T. Tamura, K. Fukunaga, “Natural language description of human activities from video images based on concept hierarchy of actions”, International Journal of Computer Vision 50 (2) (2002) 171–184.

    Article  MATH  Google Scholar 

  17. Y. Li, S. Ma, H. Lu, “A multiscale morphological method for human posture recognition”, in: Proceedings of Third International Conference on Automatic Face and Gesture Recognition, Nara, Japan (1998) pp. 56–61.

    Chapter  Google Scholar 

  18. L. Li, W. Huang, I. Gu, Q. Tian, “Statistical modeling of complex backgrounds for foreground object detection”, IEEE Transactions on Image Processing 11 (13) (2004) 1459–1472.

    Article  Google Scholar 

  19. A. Lipton, H. Fujiyoshi, R. Patil, “Moving target classification and tracking from real-video”, in: IEEE Workshop on Applications of Computer Vision (WACV'98), Princeton, NJ (1998) pp. 8–14.

    Google Scholar 

  20. M. Ma, P. McKevitt, “Interval relations in lexical semantics of verbs”, Artificial Intelligence Review 21 (3–4) (2004) 293–316.

    Article  MATH  Google Scholar 

  21. O. Masoud, N. Papanikolopoulos, “A method for human action recognition”, Image and Vision Computing 21 (8) (2003) 729–743.

    Article  Google Scholar 

  22. T. Moeslund, E. Granum, “A survey of computer vision based human motion capture”, Computer Vision and Image Understanding 81 (3) (2001) 231–268.

    Article  MATH  Google Scholar 

  23. R. Morris, D. Hogg, “Statistical models of object interaction”, International Journal of Computer Vision 37 (2) (2000) 209–215.

    Article  MATH  Google Scholar 

  24. H.-H. Nagel, “From image sequences towards conceptual descriptions”, Image and Vision Computing 6 (2) (1988) 59–74.

    Article  Google Scholar 

  25. H.-H. Nagel, “Steps toward a cognitive vision system”, AI Magazine, Cognitive Vision 25 (2) (2004) 31–50.

    MathSciNet  Google Scholar 

  26. A. Nakazawa, H. Kato, S. Hiura, S. Inokuchi, “Tracking multiple people using distributed vision systems”, IEEE International Conference on Robotics and Automation (2002) pp. 2974–2981.

    Google Scholar 

  27. H. Ning, T. Tan, L. Wang, W. Hu, “People tracking based on motion model and motion constraints with automatic initialization”, Pattern Recognition 37 (2004) 1423–1440.

    Article  Google Scholar 

  28. K. Nummiaro and E. Koller-Meier, L.J. Van Gool, “An adaptive color-based particle filter”, Image Vision Computing 21 (1) (2003) 99–110.

    Article  Google Scholar 

  29. P. Remagnino, T. Tan, K. Baker, “Agent oriented annotation in model based visual surveillance”, in: Proceedings of International Conference on Computer Vision (ICCV'98), Mumbai, India (1998) pp. 857–862.

    Google Scholar 

  30. Y. Ricquebourg, P. Bouthemy, “Real-time tracking of moving persons by exploiting spatio-temporal image slices”, IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (8) (2000) 797–808.

    Article  Google Scholar 

  31. G. Sagerer, H. Niemann, “Semantic networks for understanding scenes”, in: M. Levine (Ed.), Advances in Computer Vision and Machine Intelligence, Plenum, New York (1997).

    Google Scholar 

  32. A. Sanfeliu, J.J. Villanueva, “An approach of visual motion analysis”, Pattern Recognition Letters 26 (3) (2005) 355–368.

    Article  Google Scholar 

  33. K. Schäfer, “Fuzzy spatio-temporal logic programming”, in: C. Brzoska (Ed.), Proceedings of 7th Workshop in Temporal and Non-Classical Logics — IJCAI'97, Nagoya, Japan (1997) pp. 23–28.

    Google Scholar 

  34. H. Sidenbladh, M. Black, L. Sigal, “Implicit probabilistic models of human motion for synthesis and tracking”, in: A. Heyden, G. Sparr, M. Nielsen, P. Johansen (Eds.), Proceedings European Conference on Computer Vision (ECCV), Vol. 1, LNCS 2353, Springer, Denmark (2002) pp. 784–800.

    Google Scholar 

  35. C. Stauffer, W. Eric, L. Grimson, “Learning patterns of activity using real-time tracking”, IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (8) (2000) 747–757.

    Article  Google Scholar 

  36. N. Ukita, T. Matsuyama, “Real-time cooperative multiple-target tracking by communicating active vision agents”, Computer Vision and Iage Understanding 97 (2) (2005) 137–179.

    Article  Google Scholar 

  37. S. Wachter, H.-H. Nagel, “Tracking persons in monocular image sequences”, Computer Vision and Image Understanding 74 (3) (1999) 174–192.

    Article  Google Scholar 

  38. D. Wagg, M. Nixon, “Automated markerless extraction of walking people using deformable contour models”, Computer Animation and Virtual Worlds 15 (3–4) (2004) 399–406.

    Article  Google Scholar 

  39. L. Wang, W. Hu, T. Tan, “Recent developments in human motion analysis”, Pattern Recognition 36 (3) (2003) 585–601.

    Article  Google Scholar 

  40. M. Yamada, K. Ebihara, J. Ohya, “A new robust real-time method for extracting human silhouettes from color images”, in: Proceedings of Third International Conference on Automatic Face and Gesture Recognition, Nara, Japan (1998) pp. 528–533.

    Chapter  Google Scholar 

  41. Y. Zhang, E. Sung, E.C. Prakash, “3D modeling of dynamic facial expressions for face image analysis and synthesis”, International Conference on Vision Interface, Canada (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science +Business Media B.V.

About this chapter

Cite this chapter

Gonzàlez, J., Roca, F.X., Villanueva, J.J. (2009). Research Steps Towards Human Sequence Evaluation. In: Tavares, J.M.R.S., Jorge, R.M.N. (eds) Advances in Computational Vision and Medical Image Processing. Computational Methods in Applied Sciences, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9086-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9086-8_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9085-1

  • Online ISBN: 978-1-4020-9086-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics