# Digital Geometry and Its Applications to Medical Imaging

• Reneta P. Barneva
• Valentin E. Brimkov
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 13)

Digital geometry is a modern discipline dealing with geometric properties of digital objects (also called digital pictures). These are usually modeled as sets of points with integer coordinates representing the pixels/voxels of the considered objects. Digital geometry is developed with the expectation that it would provide an adequate mathematical background for new advanced approaches and algorithms for various problems arising in image analysis and processing, computer graphics, medical imaging, and other areas of visual computing. In this chapter we first provide a brief discussion on the motivation, basic directions, and achievements of digital geometry. Then we consider typical examples of research problems and their solutions. We focus our attention on problems related to digital manifolds. The latter play an important role in computer graphics, 3D image analysis, volume modeling, process visualization, and so forth — in short, in all areas where discrete multidimensional data need to be represented, visualized, processed, or analyzed. The objects in these areas often represent surfaces and volumes of real objects. We discuss some applications of digital curves and surfaces to medical imaging, implied by theoretical results on digital manifolds.

### Keywords

Manifold Assure Hull Agglomeration Betti

## Preview

### References

1. 1.
Basu S (2006) Journal of Symbolic Computation 41(10):1125–1154
2. 2.
Basu S, Pollack R, Roy M (2005) Computing the first Betti number and describing the connected components of semi-algebraic sets. In: Proc. STOC'05Google Scholar
3. 3.
Bertrand G, Malgouyres R (1999) Journal of Mathematical Imaging Vision 11:207–221
4. 4.
Brimkov VE (2006) Discrete volume polyhedrization: complexity and bounds on performance. In: Tavares JM et al. (eds) CompIMAGE — Computational Modelling of Objects Represented in Images: Fundamentals, Methods and Applications. Taylor & Francis, London, Leiden, New York, Philadelphia, SingaporeGoogle Scholar
5. 5.
Brimkov VE, Andres E, Barneva RP (2002) Pattern Recognition Letters 23:623–636
6. 6.
Brimkov VE, Coeurjolly D, Klette R (2007) Discrete Applied Mathematics 155:468–495
7. 7.
Brimkov VE, Klette R (2004) Curves, hypersurfaces, and good pairs of adjacency relations. In: Proc. Int. Workshop Combinatorial Image Analysis, LNCS 3322. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
8. 8.
Brimkov VE, Moroni D, Barneva R (2006) Combinatorial relations for digital pictures. In: Kuba, A et al. (eds), Discrete Geometry for Computer Imagery, LNCS 4245. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
9. 9.
Chen L (2004) Discrete Surfaces and Manifolds: A Theory of Digital-Discrete Geometry and Topology. Scientific & Practical Computing, RockvilleGoogle Scholar
10. 10.
Chen L (2005) Gradually varied surfaces and gradually varied functions. CITR-TR 156. The University of Auckland, AucklandGoogle Scholar
11. 11.
Chen L, Cooley DH, Zhang J (1999) Information Sciences 115:201–220
12. 12.
Chen L, Zhang J (1993) Digital manifolds: an intuitive definition and some properties. In: Proc. Symp. Solid Modeling Applications, ACM/SIGGRAPHGoogle Scholar
13. 13.
CHomP (Atlanta) & CAPD (Krak ó w). Homology algorithms and software. www.math.gatech.edu/chomp/homology/
14. 14.
Coeurjolly D, Guillaume A, Sivignon I (2004) Reversible discrete volume polyhedrization using Marching Cubes simplification. In: Proc. Vision Geometry XII, SPIE 5300Google Scholar
15. 15.
Cohen-Or D, Kaufman A, Kong TY (1996) On the soundness of surface voxelizations. In: Kong TY, Rosenfeld A (eds), Topological Algorithms for Digital Image Processing, Elsevier, AmsterdamGoogle Scholar
16. 16.
Daragon X, Couprie M, Bertrand G (2005) Journal of Mathematical Imaging and Vision, 23(3):379–399
17. 17.
Desbrun M, Kanso E, Kong Y (2005) Discrete differential forms for computational modeling. In: ACM SIGGRAPH 2005 Course Notes on Discrete Differential Geometry, Chapter 7Google Scholar
18. 18.
De Silva, Plex V - A Mathlab library for studying simplicial homology. math.stanford.edu/comptop/programs/plex/plexintro.pdfGoogle Scholar
19. 19.
Fourey S, Malgouyres R (2002) Discrete Applied Mathematics 125:59–80
20. 20.
Kaczynski T, Mischaikow K, Mrozek M (2004) Applied Mathematical Sciences, Vol. 157. Springer, BerlinGoogle Scholar
21. 21.
Kaufman A (1987) An algorithm for 3D scan-conversion of polygons. In: Proc. EurographicsGoogle Scholar
22. 22.
Kaufman A (1993) Volume Graphics 26(7):51–64Google Scholar
23. 23.
Kaufman A (1987) Computer Graphics 21(4):171–179
24. 24.
Kaufman A, Shimony E (1986) 3D scan-conversion algorithms for voxel-based graphics. In: Proc. Workshop on Interactive 3D Graphics: ACM, New YorkGoogle Scholar
25. 25.
Klette G (2006) Branch voxels and junctions in 3D skeletons. In: Reulke R et al. (eds), Combinatorial Image Analysis, LNCS 4040, Springer, Berlin, Heidelberg, New YorkGoogle Scholar
26. 26.
Klette G, Pan M (2004) 3D topological thinning by identifying non-simple voxels. In: Proc. Int. Workshop Combinatorial Image Analysis, LNCS 3322Google Scholar
27. 27.
Klette G, Pan M (2005) Characterization of curve-like structures in 3D medical images. In: Proc. Image Vision Computing New ZealandGoogle Scholar
28. 28.
Klette R, Rosenfeld A (2004) Digital Geometry — Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco, CA
29. 29.
Klette R, Sun H-J (2001) Digital planar segment based polyhedrization for surface area estimation. In: Arcelli C, Cordella LP, Sanniti di Baja G (eds), Visual Form, Springer, BerlinGoogle Scholar
30. 30.
Kim CE (1983) IEEE Transactions on Pattern Analysis Machine Intelligence 5:231–234
31. 31.
Kong TY (2004) International Journal of Pattern Recognition Artificial Intelligence 9:813–844
32. 32.
Kong TY, Rosenfeld A (1989) Computer Vision Graphics Image Processing 48:357–393
33. 33.
Kovalevsky VA (1989) Computer Vision, Graphics, and Image Processing 46(2):141–161
34. 34.
Lachaud J-O, Montanvert A (2000) Graphical Models and Image Processing 62:129–164Google Scholar
35. 35.
Latecki LJ (1998) Discrete Representations of Spatial Objects in Computer Vision. Kluwer, Dordrecht
36. 36.
Li F, Klette R (2006) Calculation of the number of tunnels. IMA Preprint Series 2113Google Scholar
37. 37.
Lohmann G (1988) Volumetric Image Analysis. Wiley & Teubner, ChichesterGoogle Scholar
38. 38.
Lorensen WE, Cline HE (1987) Computer Graphics 21:163–170
39. 39.
Ma C-M, Wan S-Y (2000) Computer Vision Image Understanding 80:364–378
40. 40.
Malgouyres R (1997) Theoretical Computer Science 186:1–41
41. 41.
Morgenthaler DG, Rosenfeld A (1981) Information Control 51:227–247
42. 42.
Mylopoulos JP, Pavlidis T (1971) Journal of the ACM 18:239–246
43. 43.
Nakamura A, Morita K, Imai K (2006) B-problem. CITR-TR-180. The University of Auckland, AucklandGoogle Scholar
44. 44.
Palagyi K, Kuba A (2003) Directional 3D thinning using 8 subiterations. In: Proc. Discrete Geometry Computational Imaging, LNCS 1568Google Scholar
45. 45.
Palagyi K, Kuba A (1998) Pattern Recognition Letters 19:613–627
46. 46.
Palagyi K, Sorantin E, Balogh E, Kuba A, Halmai C, Erdohelyi B, Hausegger K (2001) A sequential 3D thinning algorithm and its medical applications. In: Proc. Information Processing Medical Imaging, LNCS 2082Google Scholar
47. 47.
Peltier S, Alayrangues S, Fuchs L, Lachaud J (2005) Computation of homology groups and generators. In: Proc. DGCI, LNCS 3429Google Scholar
48. 48.
Rosenfeld A, Klette R (2001) Digital straightness. In: Electronic Notes in Theoretical Computer Science, Vol. 46Google Scholar
49. 49.
Saha PK, Chaudhuri BB (1996) Computer Vision Image Understanding 63:418–429
50. 50.
Siguera M, Latecki LJ, Gallier J (2005) Making 3D binary digital images well-composed. In: Proc. Vision Geometry, SPIE 5675Google Scholar
51. 51.
Srihari SN (1981) ACM Computing Surveys 13:399–424
52. 52.
White AT (1972) Pacific Journal of Mathematics 41:275–279